ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lspex Unicode version

Theorem lspex 14359
Description: Existence of the span of a set of vectors. (Contributed by Jim Kingdon, 25-Apr-2025.)
Assertion
Ref Expression
lspex  |-  ( W  e.  X  ->  ( LSpan `  W )  e. 
_V )

Proof of Theorem lspex
Dummy variables  s  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2229 . . 3  |-  ( Base `  W )  =  (
Base `  W )
2 eqid 2229 . . 3  |-  ( LSubSp `  W )  =  (
LSubSp `  W )
3 eqid 2229 . . 3  |-  ( LSpan `  W )  =  (
LSpan `  W )
41, 2, 3lspfval 14352 . 2  |-  ( W  e.  X  ->  ( LSpan `  W )  =  ( s  e.  ~P ( Base `  W )  |-> 
|^| { t  e.  (
LSubSp `  W )  |  s  C_  t }
) )
5 basfn 13091 . . . . 5  |-  Base  Fn  _V
6 elex 2811 . . . . 5  |-  ( W  e.  X  ->  W  e.  _V )
7 funfvex 5644 . . . . . 6  |-  ( ( Fun  Base  /\  W  e. 
dom  Base )  ->  ( Base `  W )  e. 
_V )
87funfni 5423 . . . . 5  |-  ( (
Base  Fn  _V  /\  W  e.  _V )  ->  ( Base `  W )  e. 
_V )
95, 6, 8sylancr 414 . . . 4  |-  ( W  e.  X  ->  ( Base `  W )  e. 
_V )
109pwexd 4265 . . 3  |-  ( W  e.  X  ->  ~P ( Base `  W )  e.  _V )
1110mptexd 5866 . 2  |-  ( W  e.  X  ->  (
s  e.  ~P ( Base `  W )  |->  |^|
{ t  e.  (
LSubSp `  W )  |  s  C_  t }
)  e.  _V )
124, 11eqeltrd 2306 1  |-  ( W  e.  X  ->  ( LSpan `  W )  e. 
_V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2200   {crab 2512   _Vcvv 2799    C_ wss 3197   ~Pcpw 3649   |^|cint 3923    |-> cmpt 4145    Fn wfn 5313   ` cfv 5318   Basecbs 13032   LSubSpclss 14316   LSpanclspn 14350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-cnex 8090  ax-resscn 8091  ax-1re 8093  ax-addrcl 8096
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-inn 9111  df-ndx 13035  df-slot 13036  df-base 13038  df-lsp 14351
This theorem is referenced by:  rspex  14438
  Copyright terms: Public domain W3C validator