ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lspex Unicode version

Theorem lspex 13708
Description: Existence of the span of a set of vectors. (Contributed by Jim Kingdon, 25-Apr-2025.)
Assertion
Ref Expression
lspex  |-  ( W  e.  X  ->  ( LSpan `  W )  e. 
_V )

Proof of Theorem lspex
Dummy variables  s  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2189 . . 3  |-  ( Base `  W )  =  (
Base `  W )
2 eqid 2189 . . 3  |-  ( LSubSp `  W )  =  (
LSubSp `  W )
3 eqid 2189 . . 3  |-  ( LSpan `  W )  =  (
LSpan `  W )
41, 2, 3lspfval 13701 . 2  |-  ( W  e.  X  ->  ( LSpan `  W )  =  ( s  e.  ~P ( Base `  W )  |-> 
|^| { t  e.  (
LSubSp `  W )  |  s  C_  t }
) )
5 basfn 12569 . . . . 5  |-  Base  Fn  _V
6 elex 2763 . . . . 5  |-  ( W  e.  X  ->  W  e.  _V )
7 funfvex 5551 . . . . . 6  |-  ( ( Fun  Base  /\  W  e. 
dom  Base )  ->  ( Base `  W )  e. 
_V )
87funfni 5335 . . . . 5  |-  ( (
Base  Fn  _V  /\  W  e.  _V )  ->  ( Base `  W )  e. 
_V )
95, 6, 8sylancr 414 . . . 4  |-  ( W  e.  X  ->  ( Base `  W )  e. 
_V )
109pwexd 4199 . . 3  |-  ( W  e.  X  ->  ~P ( Base `  W )  e.  _V )
1110mptexd 5763 . 2  |-  ( W  e.  X  ->  (
s  e.  ~P ( Base `  W )  |->  |^|
{ t  e.  (
LSubSp `  W )  |  s  C_  t }
)  e.  _V )
124, 11eqeltrd 2266 1  |-  ( W  e.  X  ->  ( LSpan `  W )  e. 
_V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2160   {crab 2472   _Vcvv 2752    C_ wss 3144   ~Pcpw 3590   |^|cint 3859    |-> cmpt 4079    Fn wfn 5230   ` cfv 5235   Basecbs 12511   LSubSpclss 13665   LSpanclspn 13699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-cnex 7931  ax-resscn 7932  ax-1re 7934  ax-addrcl 7937
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-inn 8949  df-ndx 12514  df-slot 12515  df-base 12517  df-lsp 13700
This theorem is referenced by:  rspex  13787
  Copyright terms: Public domain W3C validator