| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > coiun | Unicode version | ||
| Description: Composition with an indexed union. (Contributed by NM, 21-Dec-2008.) |
| Ref | Expression |
|---|---|
| coiun |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relco 5227 |
. 2
| |
| 2 | reliun 4840 |
. . 3
| |
| 3 | relco 5227 |
. . . 4
| |
| 4 | 3 | a1i 9 |
. . 3
|
| 5 | 2, 4 | mprgbir 2588 |
. 2
|
| 6 | eliun 3969 |
. . . . . . . 8
| |
| 7 | df-br 4084 |
. . . . . . . 8
| |
| 8 | df-br 4084 |
. . . . . . . . 9
| |
| 9 | 8 | rexbii 2537 |
. . . . . . . 8
|
| 10 | 6, 7, 9 | 3bitr4i 212 |
. . . . . . 7
|
| 11 | 10 | anbi1i 458 |
. . . . . 6
|
| 12 | r19.41v 2687 |
. . . . . 6
| |
| 13 | 11, 12 | bitr4i 187 |
. . . . 5
|
| 14 | 13 | exbii 1651 |
. . . 4
|
| 15 | rexcom4 2823 |
. . . 4
| |
| 16 | 14, 15 | bitr4i 187 |
. . 3
|
| 17 | vex 2802 |
. . . 4
| |
| 18 | vex 2802 |
. . . 4
| |
| 19 | 17, 18 | opelco 4894 |
. . 3
|
| 20 | eliun 3969 |
. . . 4
| |
| 21 | 17, 18 | opelco 4894 |
. . . . 5
|
| 22 | 21 | rexbii 2537 |
. . . 4
|
| 23 | 20, 22 | bitri 184 |
. . 3
|
| 24 | 16, 19, 23 | 3bitr4i 212 |
. 2
|
| 25 | 1, 5, 24 | eqrelriiv 4813 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-iun 3967 df-br 4084 df-opab 4146 df-xp 4725 df-rel 4726 df-co 4728 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |