ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  coiun Unicode version

Theorem coiun 5192
Description: Composition with an indexed union. (Contributed by NM, 21-Dec-2008.)
Assertion
Ref Expression
coiun  |-  ( A  o.  U_ x  e.  C  B )  = 
U_ x  e.  C  ( A  o.  B
)
Distinct variable group:    x, A
Allowed substitution hints:    B( x)    C( x)

Proof of Theorem coiun
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relco 5181 . 2  |-  Rel  ( A  o.  U_ x  e.  C  B )
2 reliun 4796 . . 3  |-  ( Rel  U_ x  e.  C  ( A  o.  B
)  <->  A. x  e.  C  Rel  ( A  o.  B
) )
3 relco 5181 . . . 4  |-  Rel  ( A  o.  B )
43a1i 9 . . 3  |-  ( x  e.  C  ->  Rel  ( A  o.  B
) )
52, 4mprgbir 2564 . 2  |-  Rel  U_ x  e.  C  ( A  o.  B )
6 eliun 3931 . . . . . . . 8  |-  ( <.
y ,  w >.  e. 
U_ x  e.  C  B 
<->  E. x  e.  C  <. y ,  w >.  e.  B )
7 df-br 4045 . . . . . . . 8  |-  ( y
U_ x  e.  C  B w  <->  <. y ,  w >.  e.  U_ x  e.  C  B )
8 df-br 4045 . . . . . . . . 9  |-  ( y B w  <->  <. y ,  w >.  e.  B
)
98rexbii 2513 . . . . . . . 8  |-  ( E. x  e.  C  y B w  <->  E. x  e.  C  <. y ,  w >.  e.  B
)
106, 7, 93bitr4i 212 . . . . . . 7  |-  ( y
U_ x  e.  C  B w  <->  E. x  e.  C  y B w )
1110anbi1i 458 . . . . . 6  |-  ( ( y U_ x  e.  C  B w  /\  w A z )  <->  ( E. x  e.  C  y B w  /\  w A z ) )
12 r19.41v 2662 . . . . . 6  |-  ( E. x  e.  C  ( y B w  /\  w A z )  <->  ( E. x  e.  C  y B w  /\  w A z ) )
1311, 12bitr4i 187 . . . . 5  |-  ( ( y U_ x  e.  C  B w  /\  w A z )  <->  E. x  e.  C  ( y B w  /\  w A z ) )
1413exbii 1628 . . . 4  |-  ( E. w ( y U_ x  e.  C  B w  /\  w A z )  <->  E. w E. x  e.  C  ( y B w  /\  w A z ) )
15 rexcom4 2795 . . . 4  |-  ( E. x  e.  C  E. w ( y B w  /\  w A z )  <->  E. w E. x  e.  C  ( y B w  /\  w A z ) )
1614, 15bitr4i 187 . . 3  |-  ( E. w ( y U_ x  e.  C  B w  /\  w A z )  <->  E. x  e.  C  E. w ( y B w  /\  w A z ) )
17 vex 2775 . . . 4  |-  y  e. 
_V
18 vex 2775 . . . 4  |-  z  e. 
_V
1917, 18opelco 4850 . . 3  |-  ( <.
y ,  z >.  e.  ( A  o.  U_ x  e.  C  B
)  <->  E. w ( y
U_ x  e.  C  B w  /\  w A z ) )
20 eliun 3931 . . . 4  |-  ( <.
y ,  z >.  e.  U_ x  e.  C  ( A  o.  B
)  <->  E. x  e.  C  <. y ,  z >.  e.  ( A  o.  B
) )
2117, 18opelco 4850 . . . . 5  |-  ( <.
y ,  z >.  e.  ( A  o.  B
)  <->  E. w ( y B w  /\  w A z ) )
2221rexbii 2513 . . . 4  |-  ( E. x  e.  C  <. y ,  z >.  e.  ( A  o.  B )  <->  E. x  e.  C  E. w ( y B w  /\  w A z ) )
2320, 22bitri 184 . . 3  |-  ( <.
y ,  z >.  e.  U_ x  e.  C  ( A  o.  B
)  <->  E. x  e.  C  E. w ( y B w  /\  w A z ) )
2416, 19, 233bitr4i 212 . 2  |-  ( <.
y ,  z >.  e.  ( A  o.  U_ x  e.  C  B
)  <->  <. y ,  z
>.  e.  U_ x  e.  C  ( A  o.  B ) )
251, 5, 24eqrelriiv 4769 1  |-  ( A  o.  U_ x  e.  C  B )  = 
U_ x  e.  C  ( A  o.  B
)
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1373   E.wex 1515    e. wcel 2176   E.wrex 2485   <.cop 3636   U_ciun 3927   class class class wbr 4044    o. ccom 4679   Rel wrel 4680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-iun 3929  df-br 4045  df-opab 4106  df-xp 4681  df-rel 4682  df-co 4684
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator