| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mapsnen | Unicode version | ||
| Description: Set exponentiation to a singleton exponent is equinumerous to its base. Exercise 4.43 of [Mendelson] p. 255. (Contributed by NM, 17-Dec-2003.) (Revised by Mario Carneiro, 15-Nov-2014.) |
| Ref | Expression |
|---|---|
| mapsnen.1 |
|
| mapsnen.2 |
|
| Ref | Expression |
|---|---|
| mapsnen |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnmap 6714 |
. . 3
| |
| 2 | mapsnen.1 |
. . 3
| |
| 3 | mapsnen.2 |
. . . 4
| |
| 4 | 3 | snex 4218 |
. . 3
|
| 5 | fnovex 5955 |
. . 3
| |
| 6 | 1, 2, 4, 5 | mp3an 1348 |
. 2
|
| 7 | vex 2766 |
. . . 4
| |
| 8 | 7, 3 | fvex 5578 |
. . 3
|
| 9 | 8 | a1i 9 |
. 2
|
| 10 | vex 2766 |
. . . . 5
| |
| 11 | 3, 10 | opex 4262 |
. . . 4
|
| 12 | 11 | snex 4218 |
. . 3
|
| 13 | 12 | a1i 9 |
. 2
|
| 14 | 2, 3 | mapsn 6749 |
. . . . . 6
|
| 15 | 14 | abeq2i 2307 |
. . . . 5
|
| 16 | 15 | anbi1i 458 |
. . . 4
|
| 17 | r19.41v 2653 |
. . . 4
| |
| 18 | df-rex 2481 |
. . . 4
| |
| 19 | 16, 17, 18 | 3bitr2i 208 |
. . 3
|
| 20 | fveq1 5557 |
. . . . . . . . . 10
| |
| 21 | vex 2766 |
. . . . . . . . . . 11
| |
| 22 | 3, 21 | fvsn 5757 |
. . . . . . . . . 10
|
| 23 | 20, 22 | eqtrdi 2245 |
. . . . . . . . 9
|
| 24 | 23 | eqeq2d 2208 |
. . . . . . . 8
|
| 25 | equcom 1720 |
. . . . . . . 8
| |
| 26 | 24, 25 | bitrdi 196 |
. . . . . . 7
|
| 27 | 26 | pm5.32i 454 |
. . . . . 6
|
| 28 | 27 | anbi2i 457 |
. . . . 5
|
| 29 | anass 401 |
. . . . 5
| |
| 30 | ancom 266 |
. . . . 5
| |
| 31 | 28, 29, 30 | 3bitr2i 208 |
. . . 4
|
| 32 | 31 | exbii 1619 |
. . 3
|
| 33 | eleq1w 2257 |
. . . . 5
| |
| 34 | opeq2 3809 |
. . . . . . 7
| |
| 35 | 34 | sneqd 3635 |
. . . . . 6
|
| 36 | 35 | eqeq2d 2208 |
. . . . 5
|
| 37 | 33, 36 | anbi12d 473 |
. . . 4
|
| 38 | 10, 37 | ceqsexv 2802 |
. . 3
|
| 39 | 19, 32, 38 | 3bitri 206 |
. 2
|
| 40 | 6, 2, 9, 13, 39 | en2i 6829 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-map 6709 df-en 6800 |
| This theorem is referenced by: exmidpw2en 6973 |
| Copyright terms: Public domain | W3C validator |