ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mapsnen Unicode version

Theorem mapsnen 6870
Description: Set exponentiation to a singleton exponent is equinumerous to its base. Exercise 4.43 of [Mendelson] p. 255. (Contributed by NM, 17-Dec-2003.) (Revised by Mario Carneiro, 15-Nov-2014.)
Hypotheses
Ref Expression
mapsnen.1  |-  A  e. 
_V
mapsnen.2  |-  B  e. 
_V
Assertion
Ref Expression
mapsnen  |-  ( A  ^m  { B }
)  ~~  A

Proof of Theorem mapsnen
Dummy variables  y  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fnmap 6714 . . 3  |-  ^m  Fn  ( _V  X.  _V )
2 mapsnen.1 . . 3  |-  A  e. 
_V
3 mapsnen.2 . . . 4  |-  B  e. 
_V
43snex 4218 . . 3  |-  { B }  e.  _V
5 fnovex 5955 . . 3  |-  ( (  ^m  Fn  ( _V 
X.  _V )  /\  A  e.  _V  /\  { B }  e.  _V )  ->  ( A  ^m  { B } )  e.  _V )
61, 2, 4, 5mp3an 1348 . 2  |-  ( A  ^m  { B }
)  e.  _V
7 vex 2766 . . . 4  |-  z  e. 
_V
87, 3fvex 5578 . . 3  |-  ( z `
 B )  e. 
_V
98a1i 9 . 2  |-  ( z  e.  ( A  ^m  { B } )  -> 
( z `  B
)  e.  _V )
10 vex 2766 . . . . 5  |-  w  e. 
_V
113, 10opex 4262 . . . 4  |-  <. B ,  w >.  e.  _V
1211snex 4218 . . 3  |-  { <. B ,  w >. }  e.  _V
1312a1i 9 . 2  |-  ( w  e.  A  ->  { <. B ,  w >. }  e.  _V )
142, 3mapsn 6749 . . . . . 6  |-  ( A  ^m  { B }
)  =  { z  |  E. y  e.  A  z  =  { <. B ,  y >. } }
1514abeq2i 2307 . . . . 5  |-  ( z  e.  ( A  ^m  { B } )  <->  E. y  e.  A  z  =  { <. B ,  y
>. } )
1615anbi1i 458 . . . 4  |-  ( ( z  e.  ( A  ^m  { B }
)  /\  w  =  ( z `  B
) )  <->  ( E. y  e.  A  z  =  { <. B ,  y
>. }  /\  w  =  ( z `  B
) ) )
17 r19.41v 2653 . . . 4  |-  ( E. y  e.  A  ( z  =  { <. B ,  y >. }  /\  w  =  ( z `  B ) )  <->  ( E. y  e.  A  z  =  { <. B ,  y
>. }  /\  w  =  ( z `  B
) ) )
18 df-rex 2481 . . . 4  |-  ( E. y  e.  A  ( z  =  { <. B ,  y >. }  /\  w  =  ( z `  B ) )  <->  E. y
( y  e.  A  /\  ( z  =  { <. B ,  y >. }  /\  w  =  ( z `  B ) ) ) )
1916, 17, 183bitr2i 208 . . 3  |-  ( ( z  e.  ( A  ^m  { B }
)  /\  w  =  ( z `  B
) )  <->  E. y
( y  e.  A  /\  ( z  =  { <. B ,  y >. }  /\  w  =  ( z `  B ) ) ) )
20 fveq1 5557 . . . . . . . . . 10  |-  ( z  =  { <. B , 
y >. }  ->  (
z `  B )  =  ( { <. B ,  y >. } `  B ) )
21 vex 2766 . . . . . . . . . . 11  |-  y  e. 
_V
223, 21fvsn 5757 . . . . . . . . . 10  |-  ( {
<. B ,  y >. } `  B )  =  y
2320, 22eqtrdi 2245 . . . . . . . . 9  |-  ( z  =  { <. B , 
y >. }  ->  (
z `  B )  =  y )
2423eqeq2d 2208 . . . . . . . 8  |-  ( z  =  { <. B , 
y >. }  ->  (
w  =  ( z `
 B )  <->  w  =  y ) )
25 equcom 1720 . . . . . . . 8  |-  ( w  =  y  <->  y  =  w )
2624, 25bitrdi 196 . . . . . . 7  |-  ( z  =  { <. B , 
y >. }  ->  (
w  =  ( z `
 B )  <->  y  =  w ) )
2726pm5.32i 454 . . . . . 6  |-  ( ( z  =  { <. B ,  y >. }  /\  w  =  ( z `  B ) )  <->  ( z  =  { <. B ,  y
>. }  /\  y  =  w ) )
2827anbi2i 457 . . . . 5  |-  ( ( y  e.  A  /\  ( z  =  { <. B ,  y >. }  /\  w  =  ( z `  B ) ) )  <->  ( y  e.  A  /\  (
z  =  { <. B ,  y >. }  /\  y  =  w )
) )
29 anass 401 . . . . 5  |-  ( ( ( y  e.  A  /\  z  =  { <. B ,  y >. } )  /\  y  =  w )  <->  ( y  e.  A  /\  (
z  =  { <. B ,  y >. }  /\  y  =  w )
) )
30 ancom 266 . . . . 5  |-  ( ( ( y  e.  A  /\  z  =  { <. B ,  y >. } )  /\  y  =  w )  <->  ( y  =  w  /\  (
y  e.  A  /\  z  =  { <. B , 
y >. } ) ) )
3128, 29, 303bitr2i 208 . . . 4  |-  ( ( y  e.  A  /\  ( z  =  { <. B ,  y >. }  /\  w  =  ( z `  B ) ) )  <->  ( y  =  w  /\  (
y  e.  A  /\  z  =  { <. B , 
y >. } ) ) )
3231exbii 1619 . . 3  |-  ( E. y ( y  e.  A  /\  ( z  =  { <. B , 
y >. }  /\  w  =  ( z `  B ) ) )  <->  E. y ( y  =  w  /\  ( y  e.  A  /\  z  =  { <. B ,  y
>. } ) ) )
33 eleq1w 2257 . . . . 5  |-  ( y  =  w  ->  (
y  e.  A  <->  w  e.  A ) )
34 opeq2 3809 . . . . . . 7  |-  ( y  =  w  ->  <. B , 
y >.  =  <. B ,  w >. )
3534sneqd 3635 . . . . . 6  |-  ( y  =  w  ->  { <. B ,  y >. }  =  { <. B ,  w >. } )
3635eqeq2d 2208 . . . . 5  |-  ( y  =  w  ->  (
z  =  { <. B ,  y >. }  <->  z  =  { <. B ,  w >. } ) )
3733, 36anbi12d 473 . . . 4  |-  ( y  =  w  ->  (
( y  e.  A  /\  z  =  { <. B ,  y >. } )  <->  ( w  e.  A  /\  z  =  { <. B ,  w >. } ) ) )
3810, 37ceqsexv 2802 . . 3  |-  ( E. y ( y  =  w  /\  ( y  e.  A  /\  z  =  { <. B ,  y
>. } ) )  <->  ( w  e.  A  /\  z  =  { <. B ,  w >. } ) )
3919, 32, 383bitri 206 . 2  |-  ( ( z  e.  ( A  ^m  { B }
)  /\  w  =  ( z `  B
) )  <->  ( w  e.  A  /\  z  =  { <. B ,  w >. } ) )
406, 2, 9, 13, 39en2i 6829 1  |-  ( A  ^m  { B }
)  ~~  A
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1364   E.wex 1506    e. wcel 2167   E.wrex 2476   _Vcvv 2763   {csn 3622   <.cop 3625   class class class wbr 4033    X. cxp 4661    Fn wfn 5253   ` cfv 5258  (class class class)co 5922    ^m cmap 6707    ~~ cen 6797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-map 6709  df-en 6800
This theorem is referenced by:  exmidpw2en  6973
  Copyright terms: Public domain W3C validator