| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mapsnen | Unicode version | ||
| Description: Set exponentiation to a singleton exponent is equinumerous to its base. Exercise 4.43 of [Mendelson] p. 255. (Contributed by NM, 17-Dec-2003.) (Revised by Mario Carneiro, 15-Nov-2014.) |
| Ref | Expression |
|---|---|
| mapsnen.1 |
|
| mapsnen.2 |
|
| Ref | Expression |
|---|---|
| mapsnen |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnmap 6802 |
. . 3
| |
| 2 | mapsnen.1 |
. . 3
| |
| 3 | mapsnen.2 |
. . . 4
| |
| 4 | 3 | snex 4269 |
. . 3
|
| 5 | fnovex 6034 |
. . 3
| |
| 6 | 1, 2, 4, 5 | mp3an 1371 |
. 2
|
| 7 | vex 2802 |
. . . 4
| |
| 8 | 7, 3 | fvex 5647 |
. . 3
|
| 9 | 8 | a1i 9 |
. 2
|
| 10 | vex 2802 |
. . . . 5
| |
| 11 | 3, 10 | opex 4315 |
. . . 4
|
| 12 | 11 | snex 4269 |
. . 3
|
| 13 | 12 | a1i 9 |
. 2
|
| 14 | 2, 3 | mapsn 6837 |
. . . . . 6
|
| 15 | 14 | abeq2i 2340 |
. . . . 5
|
| 16 | 15 | anbi1i 458 |
. . . 4
|
| 17 | r19.41v 2687 |
. . . 4
| |
| 18 | df-rex 2514 |
. . . 4
| |
| 19 | 16, 17, 18 | 3bitr2i 208 |
. . 3
|
| 20 | fveq1 5626 |
. . . . . . . . . 10
| |
| 21 | vex 2802 |
. . . . . . . . . . 11
| |
| 22 | 3, 21 | fvsn 5834 |
. . . . . . . . . 10
|
| 23 | 20, 22 | eqtrdi 2278 |
. . . . . . . . 9
|
| 24 | 23 | eqeq2d 2241 |
. . . . . . . 8
|
| 25 | equcom 1752 |
. . . . . . . 8
| |
| 26 | 24, 25 | bitrdi 196 |
. . . . . . 7
|
| 27 | 26 | pm5.32i 454 |
. . . . . 6
|
| 28 | 27 | anbi2i 457 |
. . . . 5
|
| 29 | anass 401 |
. . . . 5
| |
| 30 | ancom 266 |
. . . . 5
| |
| 31 | 28, 29, 30 | 3bitr2i 208 |
. . . 4
|
| 32 | 31 | exbii 1651 |
. . 3
|
| 33 | eleq1w 2290 |
. . . . 5
| |
| 34 | opeq2 3858 |
. . . . . . 7
| |
| 35 | 34 | sneqd 3679 |
. . . . . 6
|
| 36 | 35 | eqeq2d 2241 |
. . . . 5
|
| 37 | 33, 36 | anbi12d 473 |
. . . 4
|
| 38 | 10, 37 | ceqsexv 2839 |
. . 3
|
| 39 | 19, 32, 38 | 3bitri 206 |
. 2
|
| 40 | 6, 2, 9, 13, 39 | en2i 6921 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-map 6797 df-en 6888 |
| This theorem is referenced by: exmidpw2en 7074 |
| Copyright terms: Public domain | W3C validator |