Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mapsnen | Unicode version |
Description: Set exponentiation to a singleton exponent is equinumerous to its base. Exercise 4.43 of [Mendelson] p. 255. (Contributed by NM, 17-Dec-2003.) (Revised by Mario Carneiro, 15-Nov-2014.) |
Ref | Expression |
---|---|
mapsnen.1 | |
mapsnen.2 |
Ref | Expression |
---|---|
mapsnen |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnmap 6621 | . . 3 | |
2 | mapsnen.1 | . . 3 | |
3 | mapsnen.2 | . . . 4 | |
4 | 3 | snex 4164 | . . 3 |
5 | fnovex 5875 | . . 3 | |
6 | 1, 2, 4, 5 | mp3an 1327 | . 2 |
7 | vex 2729 | . . . 4 | |
8 | 7, 3 | fvex 5506 | . . 3 |
9 | 8 | a1i 9 | . 2 |
10 | vex 2729 | . . . . 5 | |
11 | 3, 10 | opex 4207 | . . . 4 |
12 | 11 | snex 4164 | . . 3 |
13 | 12 | a1i 9 | . 2 |
14 | 2, 3 | mapsn 6656 | . . . . . 6 |
15 | 14 | abeq2i 2277 | . . . . 5 |
16 | 15 | anbi1i 454 | . . . 4 |
17 | r19.41v 2622 | . . . 4 | |
18 | df-rex 2450 | . . . 4 | |
19 | 16, 17, 18 | 3bitr2i 207 | . . 3 |
20 | fveq1 5485 | . . . . . . . . . 10 | |
21 | vex 2729 | . . . . . . . . . . 11 | |
22 | 3, 21 | fvsn 5680 | . . . . . . . . . 10 |
23 | 20, 22 | eqtrdi 2215 | . . . . . . . . 9 |
24 | 23 | eqeq2d 2177 | . . . . . . . 8 |
25 | equcom 1694 | . . . . . . . 8 | |
26 | 24, 25 | bitrdi 195 | . . . . . . 7 |
27 | 26 | pm5.32i 450 | . . . . . 6 |
28 | 27 | anbi2i 453 | . . . . 5 |
29 | anass 399 | . . . . 5 | |
30 | ancom 264 | . . . . 5 | |
31 | 28, 29, 30 | 3bitr2i 207 | . . . 4 |
32 | 31 | exbii 1593 | . . 3 |
33 | eleq1w 2227 | . . . . 5 | |
34 | opeq2 3759 | . . . . . . 7 | |
35 | 34 | sneqd 3589 | . . . . . 6 |
36 | 35 | eqeq2d 2177 | . . . . 5 |
37 | 33, 36 | anbi12d 465 | . . . 4 |
38 | 10, 37 | ceqsexv 2765 | . . 3 |
39 | 19, 32, 38 | 3bitri 205 | . 2 |
40 | 6, 2, 9, 13, 39 | en2i 6736 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wceq 1343 wex 1480 wcel 2136 wrex 2445 cvv 2726 csn 3576 cop 3579 class class class wbr 3982 cxp 4602 wfn 5183 cfv 5188 (class class class)co 5842 cmap 6614 cen 6704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-map 6616 df-en 6707 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |