ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mapsnen Unicode version

Theorem mapsnen 6964
Description: Set exponentiation to a singleton exponent is equinumerous to its base. Exercise 4.43 of [Mendelson] p. 255. (Contributed by NM, 17-Dec-2003.) (Revised by Mario Carneiro, 15-Nov-2014.)
Hypotheses
Ref Expression
mapsnen.1  |-  A  e. 
_V
mapsnen.2  |-  B  e. 
_V
Assertion
Ref Expression
mapsnen  |-  ( A  ^m  { B }
)  ~~  A

Proof of Theorem mapsnen
Dummy variables  y  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fnmap 6802 . . 3  |-  ^m  Fn  ( _V  X.  _V )
2 mapsnen.1 . . 3  |-  A  e. 
_V
3 mapsnen.2 . . . 4  |-  B  e. 
_V
43snex 4269 . . 3  |-  { B }  e.  _V
5 fnovex 6034 . . 3  |-  ( (  ^m  Fn  ( _V 
X.  _V )  /\  A  e.  _V  /\  { B }  e.  _V )  ->  ( A  ^m  { B } )  e.  _V )
61, 2, 4, 5mp3an 1371 . 2  |-  ( A  ^m  { B }
)  e.  _V
7 vex 2802 . . . 4  |-  z  e. 
_V
87, 3fvex 5647 . . 3  |-  ( z `
 B )  e. 
_V
98a1i 9 . 2  |-  ( z  e.  ( A  ^m  { B } )  -> 
( z `  B
)  e.  _V )
10 vex 2802 . . . . 5  |-  w  e. 
_V
113, 10opex 4315 . . . 4  |-  <. B ,  w >.  e.  _V
1211snex 4269 . . 3  |-  { <. B ,  w >. }  e.  _V
1312a1i 9 . 2  |-  ( w  e.  A  ->  { <. B ,  w >. }  e.  _V )
142, 3mapsn 6837 . . . . . 6  |-  ( A  ^m  { B }
)  =  { z  |  E. y  e.  A  z  =  { <. B ,  y >. } }
1514abeq2i 2340 . . . . 5  |-  ( z  e.  ( A  ^m  { B } )  <->  E. y  e.  A  z  =  { <. B ,  y
>. } )
1615anbi1i 458 . . . 4  |-  ( ( z  e.  ( A  ^m  { B }
)  /\  w  =  ( z `  B
) )  <->  ( E. y  e.  A  z  =  { <. B ,  y
>. }  /\  w  =  ( z `  B
) ) )
17 r19.41v 2687 . . . 4  |-  ( E. y  e.  A  ( z  =  { <. B ,  y >. }  /\  w  =  ( z `  B ) )  <->  ( E. y  e.  A  z  =  { <. B ,  y
>. }  /\  w  =  ( z `  B
) ) )
18 df-rex 2514 . . . 4  |-  ( E. y  e.  A  ( z  =  { <. B ,  y >. }  /\  w  =  ( z `  B ) )  <->  E. y
( y  e.  A  /\  ( z  =  { <. B ,  y >. }  /\  w  =  ( z `  B ) ) ) )
1916, 17, 183bitr2i 208 . . 3  |-  ( ( z  e.  ( A  ^m  { B }
)  /\  w  =  ( z `  B
) )  <->  E. y
( y  e.  A  /\  ( z  =  { <. B ,  y >. }  /\  w  =  ( z `  B ) ) ) )
20 fveq1 5626 . . . . . . . . . 10  |-  ( z  =  { <. B , 
y >. }  ->  (
z `  B )  =  ( { <. B ,  y >. } `  B ) )
21 vex 2802 . . . . . . . . . . 11  |-  y  e. 
_V
223, 21fvsn 5834 . . . . . . . . . 10  |-  ( {
<. B ,  y >. } `  B )  =  y
2320, 22eqtrdi 2278 . . . . . . . . 9  |-  ( z  =  { <. B , 
y >. }  ->  (
z `  B )  =  y )
2423eqeq2d 2241 . . . . . . . 8  |-  ( z  =  { <. B , 
y >. }  ->  (
w  =  ( z `
 B )  <->  w  =  y ) )
25 equcom 1752 . . . . . . . 8  |-  ( w  =  y  <->  y  =  w )
2624, 25bitrdi 196 . . . . . . 7  |-  ( z  =  { <. B , 
y >. }  ->  (
w  =  ( z `
 B )  <->  y  =  w ) )
2726pm5.32i 454 . . . . . 6  |-  ( ( z  =  { <. B ,  y >. }  /\  w  =  ( z `  B ) )  <->  ( z  =  { <. B ,  y
>. }  /\  y  =  w ) )
2827anbi2i 457 . . . . 5  |-  ( ( y  e.  A  /\  ( z  =  { <. B ,  y >. }  /\  w  =  ( z `  B ) ) )  <->  ( y  e.  A  /\  (
z  =  { <. B ,  y >. }  /\  y  =  w )
) )
29 anass 401 . . . . 5  |-  ( ( ( y  e.  A  /\  z  =  { <. B ,  y >. } )  /\  y  =  w )  <->  ( y  e.  A  /\  (
z  =  { <. B ,  y >. }  /\  y  =  w )
) )
30 ancom 266 . . . . 5  |-  ( ( ( y  e.  A  /\  z  =  { <. B ,  y >. } )  /\  y  =  w )  <->  ( y  =  w  /\  (
y  e.  A  /\  z  =  { <. B , 
y >. } ) ) )
3128, 29, 303bitr2i 208 . . . 4  |-  ( ( y  e.  A  /\  ( z  =  { <. B ,  y >. }  /\  w  =  ( z `  B ) ) )  <->  ( y  =  w  /\  (
y  e.  A  /\  z  =  { <. B , 
y >. } ) ) )
3231exbii 1651 . . 3  |-  ( E. y ( y  e.  A  /\  ( z  =  { <. B , 
y >. }  /\  w  =  ( z `  B ) ) )  <->  E. y ( y  =  w  /\  ( y  e.  A  /\  z  =  { <. B ,  y
>. } ) ) )
33 eleq1w 2290 . . . . 5  |-  ( y  =  w  ->  (
y  e.  A  <->  w  e.  A ) )
34 opeq2 3858 . . . . . . 7  |-  ( y  =  w  ->  <. B , 
y >.  =  <. B ,  w >. )
3534sneqd 3679 . . . . . 6  |-  ( y  =  w  ->  { <. B ,  y >. }  =  { <. B ,  w >. } )
3635eqeq2d 2241 . . . . 5  |-  ( y  =  w  ->  (
z  =  { <. B ,  y >. }  <->  z  =  { <. B ,  w >. } ) )
3733, 36anbi12d 473 . . . 4  |-  ( y  =  w  ->  (
( y  e.  A  /\  z  =  { <. B ,  y >. } )  <->  ( w  e.  A  /\  z  =  { <. B ,  w >. } ) ) )
3810, 37ceqsexv 2839 . . 3  |-  ( E. y ( y  =  w  /\  ( y  e.  A  /\  z  =  { <. B ,  y
>. } ) )  <->  ( w  e.  A  /\  z  =  { <. B ,  w >. } ) )
3919, 32, 383bitri 206 . 2  |-  ( ( z  e.  ( A  ^m  { B }
)  /\  w  =  ( z `  B
) )  <->  ( w  e.  A  /\  z  =  { <. B ,  w >. } ) )
406, 2, 9, 13, 39en2i 6921 1  |-  ( A  ^m  { B }
)  ~~  A
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1395   E.wex 1538    e. wcel 2200   E.wrex 2509   _Vcvv 2799   {csn 3666   <.cop 3669   class class class wbr 4083    X. cxp 4717    Fn wfn 5313   ` cfv 5318  (class class class)co 6001    ^m cmap 6795    ~~ cen 6885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-map 6797  df-en 6888
This theorem is referenced by:  exmidpw2en  7074
  Copyright terms: Public domain W3C validator