ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mapsnen Unicode version

Theorem mapsnen 6789
Description: Set exponentiation to a singleton exponent is equinumerous to its base. Exercise 4.43 of [Mendelson] p. 255. (Contributed by NM, 17-Dec-2003.) (Revised by Mario Carneiro, 15-Nov-2014.)
Hypotheses
Ref Expression
mapsnen.1  |-  A  e. 
_V
mapsnen.2  |-  B  e. 
_V
Assertion
Ref Expression
mapsnen  |-  ( A  ^m  { B }
)  ~~  A

Proof of Theorem mapsnen
Dummy variables  y  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fnmap 6633 . . 3  |-  ^m  Fn  ( _V  X.  _V )
2 mapsnen.1 . . 3  |-  A  e. 
_V
3 mapsnen.2 . . . 4  |-  B  e. 
_V
43snex 4171 . . 3  |-  { B }  e.  _V
5 fnovex 5886 . . 3  |-  ( (  ^m  Fn  ( _V 
X.  _V )  /\  A  e.  _V  /\  { B }  e.  _V )  ->  ( A  ^m  { B } )  e.  _V )
61, 2, 4, 5mp3an 1332 . 2  |-  ( A  ^m  { B }
)  e.  _V
7 vex 2733 . . . 4  |-  z  e. 
_V
87, 3fvex 5516 . . 3  |-  ( z `
 B )  e. 
_V
98a1i 9 . 2  |-  ( z  e.  ( A  ^m  { B } )  -> 
( z `  B
)  e.  _V )
10 vex 2733 . . . . 5  |-  w  e. 
_V
113, 10opex 4214 . . . 4  |-  <. B ,  w >.  e.  _V
1211snex 4171 . . 3  |-  { <. B ,  w >. }  e.  _V
1312a1i 9 . 2  |-  ( w  e.  A  ->  { <. B ,  w >. }  e.  _V )
142, 3mapsn 6668 . . . . . 6  |-  ( A  ^m  { B }
)  =  { z  |  E. y  e.  A  z  =  { <. B ,  y >. } }
1514abeq2i 2281 . . . . 5  |-  ( z  e.  ( A  ^m  { B } )  <->  E. y  e.  A  z  =  { <. B ,  y
>. } )
1615anbi1i 455 . . . 4  |-  ( ( z  e.  ( A  ^m  { B }
)  /\  w  =  ( z `  B
) )  <->  ( E. y  e.  A  z  =  { <. B ,  y
>. }  /\  w  =  ( z `  B
) ) )
17 r19.41v 2626 . . . 4  |-  ( E. y  e.  A  ( z  =  { <. B ,  y >. }  /\  w  =  ( z `  B ) )  <->  ( E. y  e.  A  z  =  { <. B ,  y
>. }  /\  w  =  ( z `  B
) ) )
18 df-rex 2454 . . . 4  |-  ( E. y  e.  A  ( z  =  { <. B ,  y >. }  /\  w  =  ( z `  B ) )  <->  E. y
( y  e.  A  /\  ( z  =  { <. B ,  y >. }  /\  w  =  ( z `  B ) ) ) )
1916, 17, 183bitr2i 207 . . 3  |-  ( ( z  e.  ( A  ^m  { B }
)  /\  w  =  ( z `  B
) )  <->  E. y
( y  e.  A  /\  ( z  =  { <. B ,  y >. }  /\  w  =  ( z `  B ) ) ) )
20 fveq1 5495 . . . . . . . . . 10  |-  ( z  =  { <. B , 
y >. }  ->  (
z `  B )  =  ( { <. B ,  y >. } `  B ) )
21 vex 2733 . . . . . . . . . . 11  |-  y  e. 
_V
223, 21fvsn 5691 . . . . . . . . . 10  |-  ( {
<. B ,  y >. } `  B )  =  y
2320, 22eqtrdi 2219 . . . . . . . . 9  |-  ( z  =  { <. B , 
y >. }  ->  (
z `  B )  =  y )
2423eqeq2d 2182 . . . . . . . 8  |-  ( z  =  { <. B , 
y >. }  ->  (
w  =  ( z `
 B )  <->  w  =  y ) )
25 equcom 1699 . . . . . . . 8  |-  ( w  =  y  <->  y  =  w )
2624, 25bitrdi 195 . . . . . . 7  |-  ( z  =  { <. B , 
y >. }  ->  (
w  =  ( z `
 B )  <->  y  =  w ) )
2726pm5.32i 451 . . . . . 6  |-  ( ( z  =  { <. B ,  y >. }  /\  w  =  ( z `  B ) )  <->  ( z  =  { <. B ,  y
>. }  /\  y  =  w ) )
2827anbi2i 454 . . . . 5  |-  ( ( y  e.  A  /\  ( z  =  { <. B ,  y >. }  /\  w  =  ( z `  B ) ) )  <->  ( y  e.  A  /\  (
z  =  { <. B ,  y >. }  /\  y  =  w )
) )
29 anass 399 . . . . 5  |-  ( ( ( y  e.  A  /\  z  =  { <. B ,  y >. } )  /\  y  =  w )  <->  ( y  e.  A  /\  (
z  =  { <. B ,  y >. }  /\  y  =  w )
) )
30 ancom 264 . . . . 5  |-  ( ( ( y  e.  A  /\  z  =  { <. B ,  y >. } )  /\  y  =  w )  <->  ( y  =  w  /\  (
y  e.  A  /\  z  =  { <. B , 
y >. } ) ) )
3128, 29, 303bitr2i 207 . . . 4  |-  ( ( y  e.  A  /\  ( z  =  { <. B ,  y >. }  /\  w  =  ( z `  B ) ) )  <->  ( y  =  w  /\  (
y  e.  A  /\  z  =  { <. B , 
y >. } ) ) )
3231exbii 1598 . . 3  |-  ( E. y ( y  e.  A  /\  ( z  =  { <. B , 
y >. }  /\  w  =  ( z `  B ) ) )  <->  E. y ( y  =  w  /\  ( y  e.  A  /\  z  =  { <. B ,  y
>. } ) ) )
33 eleq1w 2231 . . . . 5  |-  ( y  =  w  ->  (
y  e.  A  <->  w  e.  A ) )
34 opeq2 3766 . . . . . . 7  |-  ( y  =  w  ->  <. B , 
y >.  =  <. B ,  w >. )
3534sneqd 3596 . . . . . 6  |-  ( y  =  w  ->  { <. B ,  y >. }  =  { <. B ,  w >. } )
3635eqeq2d 2182 . . . . 5  |-  ( y  =  w  ->  (
z  =  { <. B ,  y >. }  <->  z  =  { <. B ,  w >. } ) )
3733, 36anbi12d 470 . . . 4  |-  ( y  =  w  ->  (
( y  e.  A  /\  z  =  { <. B ,  y >. } )  <->  ( w  e.  A  /\  z  =  { <. B ,  w >. } ) ) )
3810, 37ceqsexv 2769 . . 3  |-  ( E. y ( y  =  w  /\  ( y  e.  A  /\  z  =  { <. B ,  y
>. } ) )  <->  ( w  e.  A  /\  z  =  { <. B ,  w >. } ) )
3919, 32, 383bitri 205 . 2  |-  ( ( z  e.  ( A  ^m  { B }
)  /\  w  =  ( z `  B
) )  <->  ( w  e.  A  /\  z  =  { <. B ,  w >. } ) )
406, 2, 9, 13, 39en2i 6748 1  |-  ( A  ^m  { B }
)  ~~  A
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1348   E.wex 1485    e. wcel 2141   E.wrex 2449   _Vcvv 2730   {csn 3583   <.cop 3586   class class class wbr 3989    X. cxp 4609    Fn wfn 5193   ` cfv 5198  (class class class)co 5853    ^m cmap 6626    ~~ cen 6716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-map 6628  df-en 6719
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator