ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mapsnen Unicode version

Theorem mapsnen 6777
Description: Set exponentiation to a singleton exponent is equinumerous to its base. Exercise 4.43 of [Mendelson] p. 255. (Contributed by NM, 17-Dec-2003.) (Revised by Mario Carneiro, 15-Nov-2014.)
Hypotheses
Ref Expression
mapsnen.1  |-  A  e. 
_V
mapsnen.2  |-  B  e. 
_V
Assertion
Ref Expression
mapsnen  |-  ( A  ^m  { B }
)  ~~  A

Proof of Theorem mapsnen
Dummy variables  y  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fnmap 6621 . . 3  |-  ^m  Fn  ( _V  X.  _V )
2 mapsnen.1 . . 3  |-  A  e. 
_V
3 mapsnen.2 . . . 4  |-  B  e. 
_V
43snex 4164 . . 3  |-  { B }  e.  _V
5 fnovex 5875 . . 3  |-  ( (  ^m  Fn  ( _V 
X.  _V )  /\  A  e.  _V  /\  { B }  e.  _V )  ->  ( A  ^m  { B } )  e.  _V )
61, 2, 4, 5mp3an 1327 . 2  |-  ( A  ^m  { B }
)  e.  _V
7 vex 2729 . . . 4  |-  z  e. 
_V
87, 3fvex 5506 . . 3  |-  ( z `
 B )  e. 
_V
98a1i 9 . 2  |-  ( z  e.  ( A  ^m  { B } )  -> 
( z `  B
)  e.  _V )
10 vex 2729 . . . . 5  |-  w  e. 
_V
113, 10opex 4207 . . . 4  |-  <. B ,  w >.  e.  _V
1211snex 4164 . . 3  |-  { <. B ,  w >. }  e.  _V
1312a1i 9 . 2  |-  ( w  e.  A  ->  { <. B ,  w >. }  e.  _V )
142, 3mapsn 6656 . . . . . 6  |-  ( A  ^m  { B }
)  =  { z  |  E. y  e.  A  z  =  { <. B ,  y >. } }
1514abeq2i 2277 . . . . 5  |-  ( z  e.  ( A  ^m  { B } )  <->  E. y  e.  A  z  =  { <. B ,  y
>. } )
1615anbi1i 454 . . . 4  |-  ( ( z  e.  ( A  ^m  { B }
)  /\  w  =  ( z `  B
) )  <->  ( E. y  e.  A  z  =  { <. B ,  y
>. }  /\  w  =  ( z `  B
) ) )
17 r19.41v 2622 . . . 4  |-  ( E. y  e.  A  ( z  =  { <. B ,  y >. }  /\  w  =  ( z `  B ) )  <->  ( E. y  e.  A  z  =  { <. B ,  y
>. }  /\  w  =  ( z `  B
) ) )
18 df-rex 2450 . . . 4  |-  ( E. y  e.  A  ( z  =  { <. B ,  y >. }  /\  w  =  ( z `  B ) )  <->  E. y
( y  e.  A  /\  ( z  =  { <. B ,  y >. }  /\  w  =  ( z `  B ) ) ) )
1916, 17, 183bitr2i 207 . . 3  |-  ( ( z  e.  ( A  ^m  { B }
)  /\  w  =  ( z `  B
) )  <->  E. y
( y  e.  A  /\  ( z  =  { <. B ,  y >. }  /\  w  =  ( z `  B ) ) ) )
20 fveq1 5485 . . . . . . . . . 10  |-  ( z  =  { <. B , 
y >. }  ->  (
z `  B )  =  ( { <. B ,  y >. } `  B ) )
21 vex 2729 . . . . . . . . . . 11  |-  y  e. 
_V
223, 21fvsn 5680 . . . . . . . . . 10  |-  ( {
<. B ,  y >. } `  B )  =  y
2320, 22eqtrdi 2215 . . . . . . . . 9  |-  ( z  =  { <. B , 
y >. }  ->  (
z `  B )  =  y )
2423eqeq2d 2177 . . . . . . . 8  |-  ( z  =  { <. B , 
y >. }  ->  (
w  =  ( z `
 B )  <->  w  =  y ) )
25 equcom 1694 . . . . . . . 8  |-  ( w  =  y  <->  y  =  w )
2624, 25bitrdi 195 . . . . . . 7  |-  ( z  =  { <. B , 
y >. }  ->  (
w  =  ( z `
 B )  <->  y  =  w ) )
2726pm5.32i 450 . . . . . 6  |-  ( ( z  =  { <. B ,  y >. }  /\  w  =  ( z `  B ) )  <->  ( z  =  { <. B ,  y
>. }  /\  y  =  w ) )
2827anbi2i 453 . . . . 5  |-  ( ( y  e.  A  /\  ( z  =  { <. B ,  y >. }  /\  w  =  ( z `  B ) ) )  <->  ( y  e.  A  /\  (
z  =  { <. B ,  y >. }  /\  y  =  w )
) )
29 anass 399 . . . . 5  |-  ( ( ( y  e.  A  /\  z  =  { <. B ,  y >. } )  /\  y  =  w )  <->  ( y  e.  A  /\  (
z  =  { <. B ,  y >. }  /\  y  =  w )
) )
30 ancom 264 . . . . 5  |-  ( ( ( y  e.  A  /\  z  =  { <. B ,  y >. } )  /\  y  =  w )  <->  ( y  =  w  /\  (
y  e.  A  /\  z  =  { <. B , 
y >. } ) ) )
3128, 29, 303bitr2i 207 . . . 4  |-  ( ( y  e.  A  /\  ( z  =  { <. B ,  y >. }  /\  w  =  ( z `  B ) ) )  <->  ( y  =  w  /\  (
y  e.  A  /\  z  =  { <. B , 
y >. } ) ) )
3231exbii 1593 . . 3  |-  ( E. y ( y  e.  A  /\  ( z  =  { <. B , 
y >. }  /\  w  =  ( z `  B ) ) )  <->  E. y ( y  =  w  /\  ( y  e.  A  /\  z  =  { <. B ,  y
>. } ) ) )
33 eleq1w 2227 . . . . 5  |-  ( y  =  w  ->  (
y  e.  A  <->  w  e.  A ) )
34 opeq2 3759 . . . . . . 7  |-  ( y  =  w  ->  <. B , 
y >.  =  <. B ,  w >. )
3534sneqd 3589 . . . . . 6  |-  ( y  =  w  ->  { <. B ,  y >. }  =  { <. B ,  w >. } )
3635eqeq2d 2177 . . . . 5  |-  ( y  =  w  ->  (
z  =  { <. B ,  y >. }  <->  z  =  { <. B ,  w >. } ) )
3733, 36anbi12d 465 . . . 4  |-  ( y  =  w  ->  (
( y  e.  A  /\  z  =  { <. B ,  y >. } )  <->  ( w  e.  A  /\  z  =  { <. B ,  w >. } ) ) )
3810, 37ceqsexv 2765 . . 3  |-  ( E. y ( y  =  w  /\  ( y  e.  A  /\  z  =  { <. B ,  y
>. } ) )  <->  ( w  e.  A  /\  z  =  { <. B ,  w >. } ) )
3919, 32, 383bitri 205 . 2  |-  ( ( z  e.  ( A  ^m  { B }
)  /\  w  =  ( z `  B
) )  <->  ( w  e.  A  /\  z  =  { <. B ,  w >. } ) )
406, 2, 9, 13, 39en2i 6736 1  |-  ( A  ^m  { B }
)  ~~  A
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1343   E.wex 1480    e. wcel 2136   E.wrex 2445   _Vcvv 2726   {csn 3576   <.cop 3579   class class class wbr 3982    X. cxp 4602    Fn wfn 5183   ` cfv 5188  (class class class)co 5842    ^m cmap 6614    ~~ cen 6704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-map 6616  df-en 6707
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator