ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  blbas Unicode version

Theorem blbas 12422
Description: The balls of a metric space form a basis for a topology. (Contributed by NM, 12-Sep-2006.) (Revised by Mario Carneiro, 15-Jan-2014.)
Assertion
Ref Expression
blbas  |-  ( D  e.  ( *Met `  X )  ->  ran  ( ball `  D )  e. 
TopBases )

Proof of Theorem blbas
Dummy variables  x  r  b  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 blin2 12421 . . . . . 6  |-  ( ( ( D  e.  ( *Met `  X
)  /\  z  e.  ( x  i^i  y
) )  /\  (
x  e.  ran  ( ball `  D )  /\  y  e.  ran  ( ball `  D ) ) )  ->  E. r  e.  RR+  ( z ( ball `  D ) r ) 
C_  ( x  i^i  y ) )
2 simpll 501 . . . . . . 7  |-  ( ( ( D  e.  ( *Met `  X
)  /\  z  e.  ( x  i^i  y
) )  /\  (
x  e.  ran  ( ball `  D )  /\  y  e.  ran  ( ball `  D ) ) )  ->  D  e.  ( *Met `  X
) )
3 elinel1 3228 . . . . . . . . . 10  |-  ( z  e.  ( x  i^i  y )  ->  z  e.  x )
4 elunii 3707 . . . . . . . . . 10  |-  ( ( z  e.  x  /\  x  e.  ran  ( ball `  D ) )  -> 
z  e.  U. ran  ( ball `  D )
)
53, 4sylan 279 . . . . . . . . 9  |-  ( ( z  e.  ( x  i^i  y )  /\  x  e.  ran  ( ball `  D ) )  -> 
z  e.  U. ran  ( ball `  D )
)
65ad2ant2lr 499 . . . . . . . 8  |-  ( ( ( D  e.  ( *Met `  X
)  /\  z  e.  ( x  i^i  y
) )  /\  (
x  e.  ran  ( ball `  D )  /\  y  e.  ran  ( ball `  D ) ) )  ->  z  e.  U. ran  ( ball `  D
) )
7 unirnbl 12412 . . . . . . . . 9  |-  ( D  e.  ( *Met `  X )  ->  U. ran  ( ball `  D )  =  X )
87ad2antrr 477 . . . . . . . 8  |-  ( ( ( D  e.  ( *Met `  X
)  /\  z  e.  ( x  i^i  y
) )  /\  (
x  e.  ran  ( ball `  D )  /\  y  e.  ran  ( ball `  D ) ) )  ->  U. ran  ( ball `  D )  =  X )
96, 8eleqtrd 2193 . . . . . . 7  |-  ( ( ( D  e.  ( *Met `  X
)  /\  z  e.  ( x  i^i  y
) )  /\  (
x  e.  ran  ( ball `  D )  /\  y  e.  ran  ( ball `  D ) ) )  ->  z  e.  X
)
10 blssex 12419 . . . . . . 7  |-  ( ( D  e.  ( *Met `  X )  /\  z  e.  X
)  ->  ( E. b  e.  ran  ( ball `  D ) ( z  e.  b  /\  b  C_  ( x  i^i  y
) )  <->  E. r  e.  RR+  ( z (
ball `  D )
r )  C_  (
x  i^i  y )
) )
112, 9, 10syl2anc 406 . . . . . 6  |-  ( ( ( D  e.  ( *Met `  X
)  /\  z  e.  ( x  i^i  y
) )  /\  (
x  e.  ran  ( ball `  D )  /\  y  e.  ran  ( ball `  D ) ) )  ->  ( E. b  e.  ran  ( ball `  D
) ( z  e.  b  /\  b  C_  ( x  i^i  y
) )  <->  E. r  e.  RR+  ( z (
ball `  D )
r )  C_  (
x  i^i  y )
) )
121, 11mpbird 166 . . . . 5  |-  ( ( ( D  e.  ( *Met `  X
)  /\  z  e.  ( x  i^i  y
) )  /\  (
x  e.  ran  ( ball `  D )  /\  y  e.  ran  ( ball `  D ) ) )  ->  E. b  e.  ran  ( ball `  D )
( z  e.  b  /\  b  C_  (
x  i^i  y )
) )
1312ex 114 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  z  e.  ( x  i^i  y ) )  ->  ( (
x  e.  ran  ( ball `  D )  /\  y  e.  ran  ( ball `  D ) )  ->  E. b  e.  ran  ( ball `  D )
( z  e.  b  /\  b  C_  (
x  i^i  y )
) ) )
1413ralrimdva 2486 . . 3  |-  ( D  e.  ( *Met `  X )  ->  (
( x  e.  ran  ( ball `  D )  /\  y  e.  ran  ( ball `  D )
)  ->  A. z  e.  ( x  i^i  y
) E. b  e. 
ran  ( ball `  D
) ( z  e.  b  /\  b  C_  ( x  i^i  y
) ) ) )
1514ralrimivv 2487 . 2  |-  ( D  e.  ( *Met `  X )  ->  A. x  e.  ran  ( ball `  D
) A. y  e. 
ran  ( ball `  D
) A. z  e.  ( x  i^i  y
) E. b  e. 
ran  ( ball `  D
) ( z  e.  b  /\  b  C_  ( x  i^i  y
) ) )
16 blex 12376 . . 3  |-  ( D  e.  ( *Met `  X )  ->  ( ball `  D )  e. 
_V )
17 rnexg 4762 . . 3  |-  ( (
ball `  D )  e.  _V  ->  ran  ( ball `  D )  e.  _V )
18 isbasis2g 12055 . . 3  |-  ( ran  ( ball `  D
)  e.  _V  ->  ( ran  ( ball `  D
)  e.  TopBases  <->  A. x  e.  ran  ( ball `  D
) A. y  e. 
ran  ( ball `  D
) A. z  e.  ( x  i^i  y
) E. b  e. 
ran  ( ball `  D
) ( z  e.  b  /\  b  C_  ( x  i^i  y
) ) ) )
1916, 17, 183syl 17 . 2  |-  ( D  e.  ( *Met `  X )  ->  ( ran  ( ball `  D
)  e.  TopBases  <->  A. x  e.  ran  ( ball `  D
) A. y  e. 
ran  ( ball `  D
) A. z  e.  ( x  i^i  y
) E. b  e. 
ran  ( ball `  D
) ( z  e.  b  /\  b  C_  ( x  i^i  y
) ) ) )
2015, 19mpbird 166 1  |-  ( D  e.  ( *Met `  X )  ->  ran  ( ball `  D )  e. 
TopBases )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1314    e. wcel 1463   A.wral 2390   E.wrex 2391   _Vcvv 2657    i^i cin 3036    C_ wss 3037   U.cuni 3702   ran crn 4500   ` cfv 5081  (class class class)co 5728   RR+crp 9343   *Metcxmet 11992   ballcbl 11994   TopBasesctb 12052
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4003  ax-sep 4006  ax-nul 4014  ax-pow 4058  ax-pr 4091  ax-un 4315  ax-setind 4412  ax-iinf 4462  ax-cnex 7636  ax-resscn 7637  ax-1cn 7638  ax-1re 7639  ax-icn 7640  ax-addcl 7641  ax-addrcl 7642  ax-mulcl 7643  ax-mulrcl 7644  ax-addcom 7645  ax-mulcom 7646  ax-addass 7647  ax-mulass 7648  ax-distr 7649  ax-i2m1 7650  ax-0lt1 7651  ax-1rid 7652  ax-0id 7653  ax-rnegex 7654  ax-precex 7655  ax-cnre 7656  ax-pre-ltirr 7657  ax-pre-ltwlin 7658  ax-pre-lttrn 7659  ax-pre-apti 7660  ax-pre-ltadd 7661  ax-pre-mulgt0 7662  ax-pre-mulext 7663  ax-arch 7664  ax-caucvg 7665
This theorem depends on definitions:  df-bi 116  df-stab 799  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-nel 2378  df-ral 2395  df-rex 2396  df-reu 2397  df-rmo 2398  df-rab 2399  df-v 2659  df-sbc 2879  df-csb 2972  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-nul 3330  df-if 3441  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-int 3738  df-iun 3781  df-br 3896  df-opab 3950  df-mpt 3951  df-tr 3987  df-id 4175  df-po 4178  df-iso 4179  df-iord 4248  df-on 4250  df-ilim 4251  df-suc 4253  df-iom 4465  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512  df-iota 5046  df-fun 5083  df-fn 5084  df-f 5085  df-f1 5086  df-fo 5087  df-f1o 5088  df-fv 5089  df-isom 5090  df-riota 5684  df-ov 5731  df-oprab 5732  df-mpo 5733  df-1st 5992  df-2nd 5993  df-recs 6156  df-frec 6242  df-map 6498  df-sup 6823  df-inf 6824  df-pnf 7726  df-mnf 7727  df-xr 7728  df-ltxr 7729  df-le 7730  df-sub 7858  df-neg 7859  df-reap 8255  df-ap 8262  df-div 8346  df-inn 8631  df-2 8689  df-3 8690  df-4 8691  df-n0 8882  df-z 8959  df-uz 9229  df-q 9314  df-rp 9344  df-xneg 9452  df-xadd 9453  df-seqfrec 10112  df-exp 10186  df-cj 10507  df-re 10508  df-im 10509  df-rsqrt 10662  df-abs 10663  df-psmet 11999  df-xmet 12000  df-bl 12002  df-bases 12053
This theorem is referenced by:  mopnval  12431  mopntopon  12432  elmopn  12435  blssopn  12474  metss  12483
  Copyright terms: Public domain W3C validator