ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  blbas Unicode version

Theorem blbas 14990
Description: The balls of a metric space form a basis for a topology. (Contributed by NM, 12-Sep-2006.) (Revised by Mario Carneiro, 15-Jan-2014.)
Assertion
Ref Expression
blbas  |-  ( D  e.  ( *Met `  X )  ->  ran  ( ball `  D )  e. 
TopBases )

Proof of Theorem blbas
Dummy variables  x  r  b  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 blin2 14989 . . . . . 6  |-  ( ( ( D  e.  ( *Met `  X
)  /\  z  e.  ( x  i^i  y
) )  /\  (
x  e.  ran  ( ball `  D )  /\  y  e.  ran  ( ball `  D ) ) )  ->  E. r  e.  RR+  ( z ( ball `  D ) r ) 
C_  ( x  i^i  y ) )
2 simpll 527 . . . . . . 7  |-  ( ( ( D  e.  ( *Met `  X
)  /\  z  e.  ( x  i^i  y
) )  /\  (
x  e.  ran  ( ball `  D )  /\  y  e.  ran  ( ball `  D ) ) )  ->  D  e.  ( *Met `  X
) )
3 elinel1 3363 . . . . . . . . . 10  |-  ( z  e.  ( x  i^i  y )  ->  z  e.  x )
4 elunii 3864 . . . . . . . . . 10  |-  ( ( z  e.  x  /\  x  e.  ran  ( ball `  D ) )  -> 
z  e.  U. ran  ( ball `  D )
)
53, 4sylan 283 . . . . . . . . 9  |-  ( ( z  e.  ( x  i^i  y )  /\  x  e.  ran  ( ball `  D ) )  -> 
z  e.  U. ran  ( ball `  D )
)
65ad2ant2lr 510 . . . . . . . 8  |-  ( ( ( D  e.  ( *Met `  X
)  /\  z  e.  ( x  i^i  y
) )  /\  (
x  e.  ran  ( ball `  D )  /\  y  e.  ran  ( ball `  D ) ) )  ->  z  e.  U. ran  ( ball `  D
) )
7 unirnbl 14980 . . . . . . . . 9  |-  ( D  e.  ( *Met `  X )  ->  U. ran  ( ball `  D )  =  X )
87ad2antrr 488 . . . . . . . 8  |-  ( ( ( D  e.  ( *Met `  X
)  /\  z  e.  ( x  i^i  y
) )  /\  (
x  e.  ran  ( ball `  D )  /\  y  e.  ran  ( ball `  D ) ) )  ->  U. ran  ( ball `  D )  =  X )
96, 8eleqtrd 2285 . . . . . . 7  |-  ( ( ( D  e.  ( *Met `  X
)  /\  z  e.  ( x  i^i  y
) )  /\  (
x  e.  ran  ( ball `  D )  /\  y  e.  ran  ( ball `  D ) ) )  ->  z  e.  X
)
10 blssex 14987 . . . . . . 7  |-  ( ( D  e.  ( *Met `  X )  /\  z  e.  X
)  ->  ( E. b  e.  ran  ( ball `  D ) ( z  e.  b  /\  b  C_  ( x  i^i  y
) )  <->  E. r  e.  RR+  ( z (
ball `  D )
r )  C_  (
x  i^i  y )
) )
112, 9, 10syl2anc 411 . . . . . 6  |-  ( ( ( D  e.  ( *Met `  X
)  /\  z  e.  ( x  i^i  y
) )  /\  (
x  e.  ran  ( ball `  D )  /\  y  e.  ran  ( ball `  D ) ) )  ->  ( E. b  e.  ran  ( ball `  D
) ( z  e.  b  /\  b  C_  ( x  i^i  y
) )  <->  E. r  e.  RR+  ( z (
ball `  D )
r )  C_  (
x  i^i  y )
) )
121, 11mpbird 167 . . . . 5  |-  ( ( ( D  e.  ( *Met `  X
)  /\  z  e.  ( x  i^i  y
) )  /\  (
x  e.  ran  ( ball `  D )  /\  y  e.  ran  ( ball `  D ) ) )  ->  E. b  e.  ran  ( ball `  D )
( z  e.  b  /\  b  C_  (
x  i^i  y )
) )
1312ex 115 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  z  e.  ( x  i^i  y ) )  ->  ( (
x  e.  ran  ( ball `  D )  /\  y  e.  ran  ( ball `  D ) )  ->  E. b  e.  ran  ( ball `  D )
( z  e.  b  /\  b  C_  (
x  i^i  y )
) ) )
1413ralrimdva 2587 . . 3  |-  ( D  e.  ( *Met `  X )  ->  (
( x  e.  ran  ( ball `  D )  /\  y  e.  ran  ( ball `  D )
)  ->  A. z  e.  ( x  i^i  y
) E. b  e. 
ran  ( ball `  D
) ( z  e.  b  /\  b  C_  ( x  i^i  y
) ) ) )
1514ralrimivv 2588 . 2  |-  ( D  e.  ( *Met `  X )  ->  A. x  e.  ran  ( ball `  D
) A. y  e. 
ran  ( ball `  D
) A. z  e.  ( x  i^i  y
) E. b  e. 
ran  ( ball `  D
) ( z  e.  b  /\  b  C_  ( x  i^i  y
) ) )
16 blex 14944 . . 3  |-  ( D  e.  ( *Met `  X )  ->  ( ball `  D )  e. 
_V )
17 rnexg 4957 . . 3  |-  ( (
ball `  D )  e.  _V  ->  ran  ( ball `  D )  e.  _V )
18 isbasis2g 14602 . . 3  |-  ( ran  ( ball `  D
)  e.  _V  ->  ( ran  ( ball `  D
)  e.  TopBases  <->  A. x  e.  ran  ( ball `  D
) A. y  e. 
ran  ( ball `  D
) A. z  e.  ( x  i^i  y
) E. b  e. 
ran  ( ball `  D
) ( z  e.  b  /\  b  C_  ( x  i^i  y
) ) ) )
1916, 17, 183syl 17 . 2  |-  ( D  e.  ( *Met `  X )  ->  ( ran  ( ball `  D
)  e.  TopBases  <->  A. x  e.  ran  ( ball `  D
) A. y  e. 
ran  ( ball `  D
) A. z  e.  ( x  i^i  y
) E. b  e. 
ran  ( ball `  D
) ( z  e.  b  /\  b  C_  ( x  i^i  y
) ) ) )
2015, 19mpbird 167 1  |-  ( D  e.  ( *Met `  X )  ->  ran  ( ball `  D )  e. 
TopBases )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2177   A.wral 2485   E.wrex 2486   _Vcvv 2773    i^i cin 3169    C_ wss 3170   U.cuni 3859   ran crn 4689   ` cfv 5285  (class class class)co 5962   RR+crp 9805   *Metcxmet 14383   ballcbl 14385   TopBasesctb 14599
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4170  ax-sep 4173  ax-nul 4181  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-iinf 4649  ax-cnex 8046  ax-resscn 8047  ax-1cn 8048  ax-1re 8049  ax-icn 8050  ax-addcl 8051  ax-addrcl 8052  ax-mulcl 8053  ax-mulrcl 8054  ax-addcom 8055  ax-mulcom 8056  ax-addass 8057  ax-mulass 8058  ax-distr 8059  ax-i2m1 8060  ax-0lt1 8061  ax-1rid 8062  ax-0id 8063  ax-rnegex 8064  ax-precex 8065  ax-cnre 8066  ax-pre-ltirr 8067  ax-pre-ltwlin 8068  ax-pre-lttrn 8069  ax-pre-apti 8070  ax-pre-ltadd 8071  ax-pre-mulgt0 8072  ax-pre-mulext 8073  ax-arch 8074  ax-caucvg 8075
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-iun 3938  df-br 4055  df-opab 4117  df-mpt 4118  df-tr 4154  df-id 4353  df-po 4356  df-iso 4357  df-iord 4426  df-on 4428  df-ilim 4429  df-suc 4431  df-iom 4652  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-f1 5290  df-fo 5291  df-f1o 5292  df-fv 5293  df-isom 5294  df-riota 5917  df-ov 5965  df-oprab 5966  df-mpo 5967  df-1st 6244  df-2nd 6245  df-recs 6409  df-frec 6495  df-map 6755  df-sup 7107  df-inf 7108  df-pnf 8139  df-mnf 8140  df-xr 8141  df-ltxr 8142  df-le 8143  df-sub 8275  df-neg 8276  df-reap 8678  df-ap 8685  df-div 8776  df-inn 9067  df-2 9125  df-3 9126  df-4 9127  df-n0 9326  df-z 9403  df-uz 9679  df-q 9771  df-rp 9806  df-xneg 9924  df-xadd 9925  df-seqfrec 10625  df-exp 10716  df-cj 11238  df-re 11239  df-im 11240  df-rsqrt 11394  df-abs 11395  df-psmet 14390  df-xmet 14391  df-bl 14393  df-bases 14600
This theorem is referenced by:  mopnval  14999  mopntopon  15000  elmopn  15003  blssopn  15042  metss  15051
  Copyright terms: Public domain W3C validator