ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  blf Unicode version

Theorem blf 13913
Description: Mapping of a ball. (Contributed by NM, 7-May-2007.) (Revised by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
blf  |-  ( D  e.  ( *Met `  X )  ->  ( ball `  D ) : ( X  X.  RR* )
--> ~P X )

Proof of Theorem blf
Dummy variables  x  r  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 3241 . . . . . 6  |-  { y  e.  X  |  ( x D y )  <  r }  C_  X
2 xmetrel 13846 . . . . . . . 8  |-  Rel  *Met
3 relelfvdm 5548 . . . . . . . 8  |-  ( ( Rel  *Met  /\  D  e.  ( *Met `  X ) )  ->  X  e.  dom  *Met )
42, 3mpan 424 . . . . . . 7  |-  ( D  e.  ( *Met `  X )  ->  X  e.  dom  *Met )
5 elpw2g 4157 . . . . . . 7  |-  ( X  e.  dom  *Met  ->  ( { y  e.  X  |  ( x D y )  < 
r }  e.  ~P X 
<->  { y  e.  X  |  ( x D y )  <  r }  C_  X ) )
64, 5syl 14 . . . . . 6  |-  ( D  e.  ( *Met `  X )  ->  ( { y  e.  X  |  ( x D y )  <  r }  e.  ~P X  <->  { y  e.  X  | 
( x D y )  <  r } 
C_  X ) )
71, 6mpbiri 168 . . . . 5  |-  ( D  e.  ( *Met `  X )  ->  { y  e.  X  |  ( x D y )  <  r }  e.  ~P X )
87a1d 22 . . . 4  |-  ( D  e.  ( *Met `  X )  ->  (
( x  e.  X  /\  r  e.  RR* )  ->  { y  e.  X  |  ( x D y )  <  r }  e.  ~P X
) )
98ralrimivv 2558 . . 3  |-  ( D  e.  ( *Met `  X )  ->  A. x  e.  X  A. r  e.  RR*  { y  e.  X  |  ( x D y )  < 
r }  e.  ~P X )
10 eqid 2177 . . . 4  |-  ( x  e.  X ,  r  e.  RR*  |->  { y  e.  X  |  ( x D y )  <  r } )  =  ( x  e.  X ,  r  e. 
RR*  |->  { y  e.  X  |  ( x D y )  < 
r } )
1110fmpo 6202 . . 3  |-  ( A. x  e.  X  A. r  e.  RR*  { y  e.  X  |  ( x D y )  <  r }  e.  ~P X  <->  ( x  e.  X ,  r  e. 
RR*  |->  { y  e.  X  |  ( x D y )  < 
r } ) : ( X  X.  RR* )
--> ~P X )
129, 11sylib 122 . 2  |-  ( D  e.  ( *Met `  X )  ->  (
x  e.  X , 
r  e.  RR*  |->  { y  e.  X  |  ( x D y )  <  r } ) : ( X  X.  RR* ) --> ~P X )
13 blfval 13889 . . 3  |-  ( D  e.  ( *Met `  X )  ->  ( ball `  D )  =  ( x  e.  X ,  r  e.  RR*  |->  { y  e.  X  |  ( x D y )  <  r } ) )
1413feq1d 5353 . 2  |-  ( D  e.  ( *Met `  X )  ->  (
( ball `  D ) : ( X  X.  RR* ) --> ~P X  <->  ( x  e.  X ,  r  e. 
RR*  |->  { y  e.  X  |  ( x D y )  < 
r } ) : ( X  X.  RR* )
--> ~P X ) )
1512, 14mpbird 167 1  |-  ( D  e.  ( *Met `  X )  ->  ( ball `  D ) : ( X  X.  RR* )
--> ~P X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2148   A.wral 2455   {crab 2459    C_ wss 3130   ~Pcpw 3576   class class class wbr 4004    X. cxp 4625   dom cdm 4627   Rel wrel 4632   -->wf 5213   ` cfv 5217  (class class class)co 5875    e. cmpo 5877   RR*cxr 7991    < clt 7992   *Metcxmet 13443   ballcbl 13445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-cnex 7902  ax-resscn 7903
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-fv 5225  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-map 6650  df-pnf 7994  df-mnf 7995  df-xr 7996  df-psmet 13450  df-xmet 13451  df-bl 13453
This theorem is referenced by:  blrn  13915  blelrn  13923  blssm  13924  unirnbl  13926  blin2  13935  xmettx  14013
  Copyright terms: Public domain W3C validator