ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  blf Unicode version

Theorem blf 12568
Description: Mapping of a ball. (Contributed by NM, 7-May-2007.) (Revised by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
blf  |-  ( D  e.  ( *Met `  X )  ->  ( ball `  D ) : ( X  X.  RR* )
--> ~P X )

Proof of Theorem blf
Dummy variables  x  r  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 3177 . . . . . 6  |-  { y  e.  X  |  ( x D y )  <  r }  C_  X
2 xmetrel 12501 . . . . . . . 8  |-  Rel  *Met
3 relelfvdm 5446 . . . . . . . 8  |-  ( ( Rel  *Met  /\  D  e.  ( *Met `  X ) )  ->  X  e.  dom  *Met )
42, 3mpan 420 . . . . . . 7  |-  ( D  e.  ( *Met `  X )  ->  X  e.  dom  *Met )
5 elpw2g 4076 . . . . . . 7  |-  ( X  e.  dom  *Met  ->  ( { y  e.  X  |  ( x D y )  < 
r }  e.  ~P X 
<->  { y  e.  X  |  ( x D y )  <  r }  C_  X ) )
64, 5syl 14 . . . . . 6  |-  ( D  e.  ( *Met `  X )  ->  ( { y  e.  X  |  ( x D y )  <  r }  e.  ~P X  <->  { y  e.  X  | 
( x D y )  <  r } 
C_  X ) )
71, 6mpbiri 167 . . . . 5  |-  ( D  e.  ( *Met `  X )  ->  { y  e.  X  |  ( x D y )  <  r }  e.  ~P X )
87a1d 22 . . . 4  |-  ( D  e.  ( *Met `  X )  ->  (
( x  e.  X  /\  r  e.  RR* )  ->  { y  e.  X  |  ( x D y )  <  r }  e.  ~P X
) )
98ralrimivv 2511 . . 3  |-  ( D  e.  ( *Met `  X )  ->  A. x  e.  X  A. r  e.  RR*  { y  e.  X  |  ( x D y )  < 
r }  e.  ~P X )
10 eqid 2137 . . . 4  |-  ( x  e.  X ,  r  e.  RR*  |->  { y  e.  X  |  ( x D y )  <  r } )  =  ( x  e.  X ,  r  e. 
RR*  |->  { y  e.  X  |  ( x D y )  < 
r } )
1110fmpo 6092 . . 3  |-  ( A. x  e.  X  A. r  e.  RR*  { y  e.  X  |  ( x D y )  <  r }  e.  ~P X  <->  ( x  e.  X ,  r  e. 
RR*  |->  { y  e.  X  |  ( x D y )  < 
r } ) : ( X  X.  RR* )
--> ~P X )
129, 11sylib 121 . 2  |-  ( D  e.  ( *Met `  X )  ->  (
x  e.  X , 
r  e.  RR*  |->  { y  e.  X  |  ( x D y )  <  r } ) : ( X  X.  RR* ) --> ~P X )
13 blfval 12544 . . 3  |-  ( D  e.  ( *Met `  X )  ->  ( ball `  D )  =  ( x  e.  X ,  r  e.  RR*  |->  { y  e.  X  |  ( x D y )  <  r } ) )
1413feq1d 5254 . 2  |-  ( D  e.  ( *Met `  X )  ->  (
( ball `  D ) : ( X  X.  RR* ) --> ~P X  <->  ( x  e.  X ,  r  e. 
RR*  |->  { y  e.  X  |  ( x D y )  < 
r } ) : ( X  X.  RR* )
--> ~P X ) )
1512, 14mpbird 166 1  |-  ( D  e.  ( *Met `  X )  ->  ( ball `  D ) : ( X  X.  RR* )
--> ~P X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 1480   A.wral 2414   {crab 2418    C_ wss 3066   ~Pcpw 3505   class class class wbr 3924    X. cxp 4532   dom cdm 4534   Rel wrel 4539   -->wf 5114   ` cfv 5118  (class class class)co 5767    e. cmpo 5769   RR*cxr 7792    < clt 7793   *Metcxmet 12138   ballcbl 12140
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-cnex 7704  ax-resscn 7705
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-fv 5126  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-map 6537  df-pnf 7795  df-mnf 7796  df-xr 7797  df-psmet 12145  df-xmet 12146  df-bl 12148
This theorem is referenced by:  blrn  12570  blelrn  12578  blssm  12579  unirnbl  12581  blin2  12590  xmettx  12668
  Copyright terms: Public domain W3C validator