ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0subm Unicode version

Theorem 0subm 13517
Description: The zero submonoid of an arbitrary monoid. (Contributed by AV, 17-Feb-2024.)
Hypothesis
Ref Expression
0subm.z  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
0subm  |-  ( G  e.  Mnd  ->  {  .0.  }  e.  (SubMnd `  G
) )

Proof of Theorem 0subm
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2229 . . . 4  |-  ( Base `  G )  =  (
Base `  G )
2 0subm.z . . . 4  |-  .0.  =  ( 0g `  G )
31, 2mndidcl 13463 . . 3  |-  ( G  e.  Mnd  ->  .0.  e.  ( Base `  G
) )
43snssd 3813 . 2  |-  ( G  e.  Mnd  ->  {  .0.  } 
C_  ( Base `  G
) )
5 snidg 3695 . . 3  |-  (  .0. 
e.  ( Base `  G
)  ->  .0.  e.  {  .0.  } )
63, 5syl 14 . 2  |-  ( G  e.  Mnd  ->  .0.  e.  {  .0.  } )
7 velsn 3683 . . . . 5  |-  ( a  e.  {  .0.  }  <->  a  =  .0.  )
8 velsn 3683 . . . . 5  |-  ( b  e.  {  .0.  }  <->  b  =  .0.  )
97, 8anbi12i 460 . . . 4  |-  ( ( a  e.  {  .0.  }  /\  b  e.  {  .0.  } )  <->  ( a  =  .0.  /\  b  =  .0.  ) )
10 eqid 2229 . . . . . . . 8  |-  ( +g  `  G )  =  ( +g  `  G )
111, 10, 2mndlid 13468 . . . . . . 7  |-  ( ( G  e.  Mnd  /\  .0.  e.  ( Base `  G
) )  ->  (  .0.  ( +g  `  G
)  .0.  )  =  .0.  )
123, 11mpdan 421 . . . . . 6  |-  ( G  e.  Mnd  ->  (  .0.  ( +g  `  G
)  .0.  )  =  .0.  )
1312, 3eqeltrd 2306 . . . . . . 7  |-  ( G  e.  Mnd  ->  (  .0.  ( +g  `  G
)  .0.  )  e.  ( Base `  G
) )
14 elsng 3681 . . . . . . 7  |-  ( (  .0.  ( +g  `  G
)  .0.  )  e.  ( Base `  G
)  ->  ( (  .0.  ( +g  `  G
)  .0.  )  e. 
{  .0.  }  <->  (  .0.  ( +g  `  G )  .0.  )  =  .0.  ) )
1513, 14syl 14 . . . . . 6  |-  ( G  e.  Mnd  ->  (
(  .0.  ( +g  `  G )  .0.  )  e.  {  .0.  }  <->  (  .0.  ( +g  `  G )  .0.  )  =  .0.  ) )
1612, 15mpbird 167 . . . . 5  |-  ( G  e.  Mnd  ->  (  .0.  ( +g  `  G
)  .0.  )  e. 
{  .0.  } )
17 oveq12 6010 . . . . . 6  |-  ( ( a  =  .0.  /\  b  =  .0.  )  ->  ( a ( +g  `  G ) b )  =  (  .0.  ( +g  `  G )  .0.  ) )
1817eleq1d 2298 . . . . 5  |-  ( ( a  =  .0.  /\  b  =  .0.  )  ->  ( ( a ( +g  `  G ) b )  e.  {  .0.  }  <->  (  .0.  ( +g  `  G )  .0.  )  e.  {  .0.  } ) )
1916, 18syl5ibrcom 157 . . . 4  |-  ( G  e.  Mnd  ->  (
( a  =  .0. 
/\  b  =  .0.  )  ->  ( a
( +g  `  G ) b )  e.  {  .0.  } ) )
209, 19biimtrid 152 . . 3  |-  ( G  e.  Mnd  ->  (
( a  e.  {  .0.  }  /\  b  e. 
{  .0.  } )  ->  ( a ( +g  `  G ) b )  e.  {  .0.  } ) )
2120ralrimivv 2611 . 2  |-  ( G  e.  Mnd  ->  A. a  e.  {  .0.  } A. b  e.  {  .0.  }  ( a ( +g  `  G ) b )  e.  {  .0.  }
)
221, 2, 10issubm 13505 . 2  |-  ( G  e.  Mnd  ->  ( {  .0.  }  e.  (SubMnd `  G )  <->  ( {  .0.  }  C_  ( Base `  G )  /\  .0.  e.  {  .0.  }  /\  A. a  e.  {  .0.  } A. b  e.  {  .0.  }  ( a ( +g  `  G ) b )  e.  {  .0.  } ) ) )
234, 6, 21, 22mpbir3and 1204 1  |-  ( G  e.  Mnd  ->  {  .0.  }  e.  (SubMnd `  G
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   A.wral 2508    C_ wss 3197   {csn 3666   ` cfv 5318  (class class class)co 6001   Basecbs 13032   +g cplusg 13110   0gc0g 13289   Mndcmnd 13449  SubMndcsubmnd 13491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-cnex 8090  ax-resscn 8091  ax-1re 8093  ax-addrcl 8096
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-iota 5278  df-fun 5320  df-fn 5321  df-fv 5326  df-riota 5954  df-ov 6004  df-inn 9111  df-2 9169  df-ndx 13035  df-slot 13036  df-base 13038  df-plusg 13123  df-0g 13291  df-mgm 13389  df-sgrp 13435  df-mnd 13450  df-submnd 13493
This theorem is referenced by:  0subg  13736
  Copyright terms: Public domain W3C validator