ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0subm Unicode version

Theorem 0subm 13116
Description: The zero submonoid of an arbitrary monoid. (Contributed by AV, 17-Feb-2024.)
Hypothesis
Ref Expression
0subm.z  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
0subm  |-  ( G  e.  Mnd  ->  {  .0.  }  e.  (SubMnd `  G
) )

Proof of Theorem 0subm
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2196 . . . 4  |-  ( Base `  G )  =  (
Base `  G )
2 0subm.z . . . 4  |-  .0.  =  ( 0g `  G )
31, 2mndidcl 13071 . . 3  |-  ( G  e.  Mnd  ->  .0.  e.  ( Base `  G
) )
43snssd 3767 . 2  |-  ( G  e.  Mnd  ->  {  .0.  } 
C_  ( Base `  G
) )
5 snidg 3651 . . 3  |-  (  .0. 
e.  ( Base `  G
)  ->  .0.  e.  {  .0.  } )
63, 5syl 14 . 2  |-  ( G  e.  Mnd  ->  .0.  e.  {  .0.  } )
7 velsn 3639 . . . . 5  |-  ( a  e.  {  .0.  }  <->  a  =  .0.  )
8 velsn 3639 . . . . 5  |-  ( b  e.  {  .0.  }  <->  b  =  .0.  )
97, 8anbi12i 460 . . . 4  |-  ( ( a  e.  {  .0.  }  /\  b  e.  {  .0.  } )  <->  ( a  =  .0.  /\  b  =  .0.  ) )
10 eqid 2196 . . . . . . . 8  |-  ( +g  `  G )  =  ( +g  `  G )
111, 10, 2mndlid 13076 . . . . . . 7  |-  ( ( G  e.  Mnd  /\  .0.  e.  ( Base `  G
) )  ->  (  .0.  ( +g  `  G
)  .0.  )  =  .0.  )
123, 11mpdan 421 . . . . . 6  |-  ( G  e.  Mnd  ->  (  .0.  ( +g  `  G
)  .0.  )  =  .0.  )
1312, 3eqeltrd 2273 . . . . . . 7  |-  ( G  e.  Mnd  ->  (  .0.  ( +g  `  G
)  .0.  )  e.  ( Base `  G
) )
14 elsng 3637 . . . . . . 7  |-  ( (  .0.  ( +g  `  G
)  .0.  )  e.  ( Base `  G
)  ->  ( (  .0.  ( +g  `  G
)  .0.  )  e. 
{  .0.  }  <->  (  .0.  ( +g  `  G )  .0.  )  =  .0.  ) )
1513, 14syl 14 . . . . . 6  |-  ( G  e.  Mnd  ->  (
(  .0.  ( +g  `  G )  .0.  )  e.  {  .0.  }  <->  (  .0.  ( +g  `  G )  .0.  )  =  .0.  ) )
1612, 15mpbird 167 . . . . 5  |-  ( G  e.  Mnd  ->  (  .0.  ( +g  `  G
)  .0.  )  e. 
{  .0.  } )
17 oveq12 5931 . . . . . 6  |-  ( ( a  =  .0.  /\  b  =  .0.  )  ->  ( a ( +g  `  G ) b )  =  (  .0.  ( +g  `  G )  .0.  ) )
1817eleq1d 2265 . . . . 5  |-  ( ( a  =  .0.  /\  b  =  .0.  )  ->  ( ( a ( +g  `  G ) b )  e.  {  .0.  }  <->  (  .0.  ( +g  `  G )  .0.  )  e.  {  .0.  } ) )
1916, 18syl5ibrcom 157 . . . 4  |-  ( G  e.  Mnd  ->  (
( a  =  .0. 
/\  b  =  .0.  )  ->  ( a
( +g  `  G ) b )  e.  {  .0.  } ) )
209, 19biimtrid 152 . . 3  |-  ( G  e.  Mnd  ->  (
( a  e.  {  .0.  }  /\  b  e. 
{  .0.  } )  ->  ( a ( +g  `  G ) b )  e.  {  .0.  } ) )
2120ralrimivv 2578 . 2  |-  ( G  e.  Mnd  ->  A. a  e.  {  .0.  } A. b  e.  {  .0.  }  ( a ( +g  `  G ) b )  e.  {  .0.  }
)
221, 2, 10issubm 13104 . 2  |-  ( G  e.  Mnd  ->  ( {  .0.  }  e.  (SubMnd `  G )  <->  ( {  .0.  }  C_  ( Base `  G )  /\  .0.  e.  {  .0.  }  /\  A. a  e.  {  .0.  } A. b  e.  {  .0.  }  ( a ( +g  `  G ) b )  e.  {  .0.  } ) ) )
234, 6, 21, 22mpbir3and 1182 1  |-  ( G  e.  Mnd  ->  {  .0.  }  e.  (SubMnd `  G
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   A.wral 2475    C_ wss 3157   {csn 3622   ` cfv 5258  (class class class)co 5922   Basecbs 12678   +g cplusg 12755   0gc0g 12927   Mndcmnd 13057  SubMndcsubmnd 13090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266  df-riota 5877  df-ov 5925  df-inn 8991  df-2 9049  df-ndx 12681  df-slot 12682  df-base 12684  df-plusg 12768  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-submnd 13092
This theorem is referenced by:  0subg  13329
  Copyright terms: Public domain W3C validator