ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0subm Unicode version

Theorem 0subm 13431
Description: The zero submonoid of an arbitrary monoid. (Contributed by AV, 17-Feb-2024.)
Hypothesis
Ref Expression
0subm.z  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
0subm  |-  ( G  e.  Mnd  ->  {  .0.  }  e.  (SubMnd `  G
) )

Proof of Theorem 0subm
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2207 . . . 4  |-  ( Base `  G )  =  (
Base `  G )
2 0subm.z . . . 4  |-  .0.  =  ( 0g `  G )
31, 2mndidcl 13377 . . 3  |-  ( G  e.  Mnd  ->  .0.  e.  ( Base `  G
) )
43snssd 3789 . 2  |-  ( G  e.  Mnd  ->  {  .0.  } 
C_  ( Base `  G
) )
5 snidg 3672 . . 3  |-  (  .0. 
e.  ( Base `  G
)  ->  .0.  e.  {  .0.  } )
63, 5syl 14 . 2  |-  ( G  e.  Mnd  ->  .0.  e.  {  .0.  } )
7 velsn 3660 . . . . 5  |-  ( a  e.  {  .0.  }  <->  a  =  .0.  )
8 velsn 3660 . . . . 5  |-  ( b  e.  {  .0.  }  <->  b  =  .0.  )
97, 8anbi12i 460 . . . 4  |-  ( ( a  e.  {  .0.  }  /\  b  e.  {  .0.  } )  <->  ( a  =  .0.  /\  b  =  .0.  ) )
10 eqid 2207 . . . . . . . 8  |-  ( +g  `  G )  =  ( +g  `  G )
111, 10, 2mndlid 13382 . . . . . . 7  |-  ( ( G  e.  Mnd  /\  .0.  e.  ( Base `  G
) )  ->  (  .0.  ( +g  `  G
)  .0.  )  =  .0.  )
123, 11mpdan 421 . . . . . 6  |-  ( G  e.  Mnd  ->  (  .0.  ( +g  `  G
)  .0.  )  =  .0.  )
1312, 3eqeltrd 2284 . . . . . . 7  |-  ( G  e.  Mnd  ->  (  .0.  ( +g  `  G
)  .0.  )  e.  ( Base `  G
) )
14 elsng 3658 . . . . . . 7  |-  ( (  .0.  ( +g  `  G
)  .0.  )  e.  ( Base `  G
)  ->  ( (  .0.  ( +g  `  G
)  .0.  )  e. 
{  .0.  }  <->  (  .0.  ( +g  `  G )  .0.  )  =  .0.  ) )
1513, 14syl 14 . . . . . 6  |-  ( G  e.  Mnd  ->  (
(  .0.  ( +g  `  G )  .0.  )  e.  {  .0.  }  <->  (  .0.  ( +g  `  G )  .0.  )  =  .0.  ) )
1612, 15mpbird 167 . . . . 5  |-  ( G  e.  Mnd  ->  (  .0.  ( +g  `  G
)  .0.  )  e. 
{  .0.  } )
17 oveq12 5976 . . . . . 6  |-  ( ( a  =  .0.  /\  b  =  .0.  )  ->  ( a ( +g  `  G ) b )  =  (  .0.  ( +g  `  G )  .0.  ) )
1817eleq1d 2276 . . . . 5  |-  ( ( a  =  .0.  /\  b  =  .0.  )  ->  ( ( a ( +g  `  G ) b )  e.  {  .0.  }  <->  (  .0.  ( +g  `  G )  .0.  )  e.  {  .0.  } ) )
1916, 18syl5ibrcom 157 . . . 4  |-  ( G  e.  Mnd  ->  (
( a  =  .0. 
/\  b  =  .0.  )  ->  ( a
( +g  `  G ) b )  e.  {  .0.  } ) )
209, 19biimtrid 152 . . 3  |-  ( G  e.  Mnd  ->  (
( a  e.  {  .0.  }  /\  b  e. 
{  .0.  } )  ->  ( a ( +g  `  G ) b )  e.  {  .0.  } ) )
2120ralrimivv 2589 . 2  |-  ( G  e.  Mnd  ->  A. a  e.  {  .0.  } A. b  e.  {  .0.  }  ( a ( +g  `  G ) b )  e.  {  .0.  }
)
221, 2, 10issubm 13419 . 2  |-  ( G  e.  Mnd  ->  ( {  .0.  }  e.  (SubMnd `  G )  <->  ( {  .0.  }  C_  ( Base `  G )  /\  .0.  e.  {  .0.  }  /\  A. a  e.  {  .0.  } A. b  e.  {  .0.  }  ( a ( +g  `  G ) b )  e.  {  .0.  } ) ) )
234, 6, 21, 22mpbir3and 1183 1  |-  ( G  e.  Mnd  ->  {  .0.  }  e.  (SubMnd `  G
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178   A.wral 2486    C_ wss 3174   {csn 3643   ` cfv 5290  (class class class)co 5967   Basecbs 12947   +g cplusg 13024   0gc0g 13203   Mndcmnd 13363  SubMndcsubmnd 13405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-cnex 8051  ax-resscn 8052  ax-1re 8054  ax-addrcl 8057
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-iota 5251  df-fun 5292  df-fn 5293  df-fv 5298  df-riota 5922  df-ov 5970  df-inn 9072  df-2 9130  df-ndx 12950  df-slot 12951  df-base 12953  df-plusg 13037  df-0g 13205  df-mgm 13303  df-sgrp 13349  df-mnd 13364  df-submnd 13407
This theorem is referenced by:  0subg  13650
  Copyright terms: Public domain W3C validator