ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0subm Unicode version

Theorem 0subm 13056
Description: The zero submonoid of an arbitrary monoid. (Contributed by AV, 17-Feb-2024.)
Hypothesis
Ref Expression
0subm.z  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
0subm  |-  ( G  e.  Mnd  ->  {  .0.  }  e.  (SubMnd `  G
) )

Proof of Theorem 0subm
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2193 . . . 4  |-  ( Base `  G )  =  (
Base `  G )
2 0subm.z . . . 4  |-  .0.  =  ( 0g `  G )
31, 2mndidcl 13011 . . 3  |-  ( G  e.  Mnd  ->  .0.  e.  ( Base `  G
) )
43snssd 3763 . 2  |-  ( G  e.  Mnd  ->  {  .0.  } 
C_  ( Base `  G
) )
5 snidg 3647 . . 3  |-  (  .0. 
e.  ( Base `  G
)  ->  .0.  e.  {  .0.  } )
63, 5syl 14 . 2  |-  ( G  e.  Mnd  ->  .0.  e.  {  .0.  } )
7 velsn 3635 . . . . 5  |-  ( a  e.  {  .0.  }  <->  a  =  .0.  )
8 velsn 3635 . . . . 5  |-  ( b  e.  {  .0.  }  <->  b  =  .0.  )
97, 8anbi12i 460 . . . 4  |-  ( ( a  e.  {  .0.  }  /\  b  e.  {  .0.  } )  <->  ( a  =  .0.  /\  b  =  .0.  ) )
10 eqid 2193 . . . . . . . 8  |-  ( +g  `  G )  =  ( +g  `  G )
111, 10, 2mndlid 13016 . . . . . . 7  |-  ( ( G  e.  Mnd  /\  .0.  e.  ( Base `  G
) )  ->  (  .0.  ( +g  `  G
)  .0.  )  =  .0.  )
123, 11mpdan 421 . . . . . 6  |-  ( G  e.  Mnd  ->  (  .0.  ( +g  `  G
)  .0.  )  =  .0.  )
1312, 3eqeltrd 2270 . . . . . . 7  |-  ( G  e.  Mnd  ->  (  .0.  ( +g  `  G
)  .0.  )  e.  ( Base `  G
) )
14 elsng 3633 . . . . . . 7  |-  ( (  .0.  ( +g  `  G
)  .0.  )  e.  ( Base `  G
)  ->  ( (  .0.  ( +g  `  G
)  .0.  )  e. 
{  .0.  }  <->  (  .0.  ( +g  `  G )  .0.  )  =  .0.  ) )
1513, 14syl 14 . . . . . 6  |-  ( G  e.  Mnd  ->  (
(  .0.  ( +g  `  G )  .0.  )  e.  {  .0.  }  <->  (  .0.  ( +g  `  G )  .0.  )  =  .0.  ) )
1612, 15mpbird 167 . . . . 5  |-  ( G  e.  Mnd  ->  (  .0.  ( +g  `  G
)  .0.  )  e. 
{  .0.  } )
17 oveq12 5927 . . . . . 6  |-  ( ( a  =  .0.  /\  b  =  .0.  )  ->  ( a ( +g  `  G ) b )  =  (  .0.  ( +g  `  G )  .0.  ) )
1817eleq1d 2262 . . . . 5  |-  ( ( a  =  .0.  /\  b  =  .0.  )  ->  ( ( a ( +g  `  G ) b )  e.  {  .0.  }  <->  (  .0.  ( +g  `  G )  .0.  )  e.  {  .0.  } ) )
1916, 18syl5ibrcom 157 . . . 4  |-  ( G  e.  Mnd  ->  (
( a  =  .0. 
/\  b  =  .0.  )  ->  ( a
( +g  `  G ) b )  e.  {  .0.  } ) )
209, 19biimtrid 152 . . 3  |-  ( G  e.  Mnd  ->  (
( a  e.  {  .0.  }  /\  b  e. 
{  .0.  } )  ->  ( a ( +g  `  G ) b )  e.  {  .0.  } ) )
2120ralrimivv 2575 . 2  |-  ( G  e.  Mnd  ->  A. a  e.  {  .0.  } A. b  e.  {  .0.  }  ( a ( +g  `  G ) b )  e.  {  .0.  }
)
221, 2, 10issubm 13044 . 2  |-  ( G  e.  Mnd  ->  ( {  .0.  }  e.  (SubMnd `  G )  <->  ( {  .0.  }  C_  ( Base `  G )  /\  .0.  e.  {  .0.  }  /\  A. a  e.  {  .0.  } A. b  e.  {  .0.  }  ( a ( +g  `  G ) b )  e.  {  .0.  } ) ) )
234, 6, 21, 22mpbir3and 1182 1  |-  ( G  e.  Mnd  ->  {  .0.  }  e.  (SubMnd `  G
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   A.wral 2472    C_ wss 3153   {csn 3618   ` cfv 5254  (class class class)co 5918   Basecbs 12618   +g cplusg 12695   0gc0g 12867   Mndcmnd 12997  SubMndcsubmnd 13030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-iota 5215  df-fun 5256  df-fn 5257  df-fv 5262  df-riota 5873  df-ov 5921  df-inn 8983  df-2 9041  df-ndx 12621  df-slot 12622  df-base 12624  df-plusg 12708  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-submnd 13032
This theorem is referenced by:  0subg  13269
  Copyright terms: Public domain W3C validator