ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0subm Unicode version

Theorem 0subm 12731
Description: The zero submonoid of an arbitrary monoid. (Contributed by AV, 17-Feb-2024.)
Hypothesis
Ref Expression
0subm.z  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
0subm  |-  ( G  e.  Mnd  ->  {  .0.  }  e.  (SubMnd `  G
) )

Proof of Theorem 0subm
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2175 . . . 4  |-  ( Base `  G )  =  (
Base `  G )
2 0subm.z . . . 4  |-  .0.  =  ( 0g `  G )
31, 2mndidcl 12695 . . 3  |-  ( G  e.  Mnd  ->  .0.  e.  ( Base `  G
) )
43snssd 3734 . 2  |-  ( G  e.  Mnd  ->  {  .0.  } 
C_  ( Base `  G
) )
5 snidg 3618 . . 3  |-  (  .0. 
e.  ( Base `  G
)  ->  .0.  e.  {  .0.  } )
63, 5syl 14 . 2  |-  ( G  e.  Mnd  ->  .0.  e.  {  .0.  } )
7 velsn 3606 . . . . 5  |-  ( a  e.  {  .0.  }  <->  a  =  .0.  )
8 velsn 3606 . . . . 5  |-  ( b  e.  {  .0.  }  <->  b  =  .0.  )
97, 8anbi12i 460 . . . 4  |-  ( ( a  e.  {  .0.  }  /\  b  e.  {  .0.  } )  <->  ( a  =  .0.  /\  b  =  .0.  ) )
10 eqid 2175 . . . . . . . 8  |-  ( +g  `  G )  =  ( +g  `  G )
111, 10, 2mndlid 12700 . . . . . . 7  |-  ( ( G  e.  Mnd  /\  .0.  e.  ( Base `  G
) )  ->  (  .0.  ( +g  `  G
)  .0.  )  =  .0.  )
123, 11mpdan 421 . . . . . 6  |-  ( G  e.  Mnd  ->  (  .0.  ( +g  `  G
)  .0.  )  =  .0.  )
1312, 3eqeltrd 2252 . . . . . . 7  |-  ( G  e.  Mnd  ->  (  .0.  ( +g  `  G
)  .0.  )  e.  ( Base `  G
) )
14 elsng 3604 . . . . . . 7  |-  ( (  .0.  ( +g  `  G
)  .0.  )  e.  ( Base `  G
)  ->  ( (  .0.  ( +g  `  G
)  .0.  )  e. 
{  .0.  }  <->  (  .0.  ( +g  `  G )  .0.  )  =  .0.  ) )
1513, 14syl 14 . . . . . 6  |-  ( G  e.  Mnd  ->  (
(  .0.  ( +g  `  G )  .0.  )  e.  {  .0.  }  <->  (  .0.  ( +g  `  G )  .0.  )  =  .0.  ) )
1612, 15mpbird 167 . . . . 5  |-  ( G  e.  Mnd  ->  (  .0.  ( +g  `  G
)  .0.  )  e. 
{  .0.  } )
17 oveq12 5874 . . . . . 6  |-  ( ( a  =  .0.  /\  b  =  .0.  )  ->  ( a ( +g  `  G ) b )  =  (  .0.  ( +g  `  G )  .0.  ) )
1817eleq1d 2244 . . . . 5  |-  ( ( a  =  .0.  /\  b  =  .0.  )  ->  ( ( a ( +g  `  G ) b )  e.  {  .0.  }  <->  (  .0.  ( +g  `  G )  .0.  )  e.  {  .0.  } ) )
1916, 18syl5ibrcom 157 . . . 4  |-  ( G  e.  Mnd  ->  (
( a  =  .0. 
/\  b  =  .0.  )  ->  ( a
( +g  `  G ) b )  e.  {  .0.  } ) )
209, 19biimtrid 152 . . 3  |-  ( G  e.  Mnd  ->  (
( a  e.  {  .0.  }  /\  b  e. 
{  .0.  } )  ->  ( a ( +g  `  G ) b )  e.  {  .0.  } ) )
2120ralrimivv 2556 . 2  |-  ( G  e.  Mnd  ->  A. a  e.  {  .0.  } A. b  e.  {  .0.  }  ( a ( +g  `  G ) b )  e.  {  .0.  }
)
221, 2, 10issubm 12724 . 2  |-  ( G  e.  Mnd  ->  ( {  .0.  }  e.  (SubMnd `  G )  <->  ( {  .0.  }  C_  ( Base `  G )  /\  .0.  e.  {  .0.  }  /\  A. a  e.  {  .0.  } A. b  e.  {  .0.  }  ( a ( +g  `  G ) b )  e.  {  .0.  } ) ) )
234, 6, 21, 22mpbir3and 1180 1  |-  ( G  e.  Mnd  ->  {  .0.  }  e.  (SubMnd `  G
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2146   A.wral 2453    C_ wss 3127   {csn 3589   ` cfv 5208  (class class class)co 5865   Basecbs 12427   +g cplusg 12491   0gc0g 12625   Mndcmnd 12681  SubMndcsubmnd 12711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-cnex 7877  ax-resscn 7878  ax-1re 7880  ax-addrcl 7883
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-reu 2460  df-rmo 2461  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-iota 5170  df-fun 5210  df-fn 5211  df-fv 5216  df-riota 5821  df-ov 5868  df-inn 8891  df-2 8949  df-ndx 12430  df-slot 12431  df-base 12433  df-plusg 12504  df-0g 12627  df-mgm 12639  df-sgrp 12672  df-mnd 12682  df-submnd 12713
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator