Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 0subm | Unicode version |
Description: The zero submonoid of an arbitrary monoid. (Contributed by AV, 17-Feb-2024.) |
Ref | Expression |
---|---|
0subm.z |
Ref | Expression |
---|---|
0subm | SubMnd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2175 | . . . 4 | |
2 | 0subm.z | . . . 4 | |
3 | 1, 2 | mndidcl 12695 | . . 3 |
4 | 3 | snssd 3734 | . 2 |
5 | snidg 3618 | . . 3 | |
6 | 3, 5 | syl 14 | . 2 |
7 | velsn 3606 | . . . . 5 | |
8 | velsn 3606 | . . . . 5 | |
9 | 7, 8 | anbi12i 460 | . . . 4 |
10 | eqid 2175 | . . . . . . . 8 | |
11 | 1, 10, 2 | mndlid 12700 | . . . . . . 7 |
12 | 3, 11 | mpdan 421 | . . . . . 6 |
13 | 12, 3 | eqeltrd 2252 | . . . . . . 7 |
14 | elsng 3604 | . . . . . . 7 | |
15 | 13, 14 | syl 14 | . . . . . 6 |
16 | 12, 15 | mpbird 167 | . . . . 5 |
17 | oveq12 5874 | . . . . . 6 | |
18 | 17 | eleq1d 2244 | . . . . 5 |
19 | 16, 18 | syl5ibrcom 157 | . . . 4 |
20 | 9, 19 | biimtrid 152 | . . 3 |
21 | 20 | ralrimivv 2556 | . 2 |
22 | 1, 2, 10 | issubm 12724 | . 2 SubMnd |
23 | 4, 6, 21, 22 | mpbir3and 1180 | 1 SubMnd |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wb 105 wceq 1353 wcel 2146 wral 2453 wss 3127 csn 3589 cfv 5208 (class class class)co 5865 cbs 12427 cplusg 12491 c0g 12625 cmnd 12681 SubMndcsubmnd 12711 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-cnex 7877 ax-resscn 7878 ax-1re 7880 ax-addrcl 7883 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-reu 2460 df-rmo 2461 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-iota 5170 df-fun 5210 df-fn 5211 df-fv 5216 df-riota 5821 df-ov 5868 df-inn 8891 df-2 8949 df-ndx 12430 df-slot 12431 df-base 12433 df-plusg 12504 df-0g 12627 df-mgm 12639 df-sgrp 12672 df-mnd 12682 df-submnd 12713 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |