ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relcoi2 Unicode version

Theorem relcoi2 5259
Description: Composition with the identity relation restricted to a relation's field. (Contributed by FL, 2-May-2011.)
Assertion
Ref Expression
relcoi2  |-  ( Rel 
R  ->  ( (  _I  |`  U. U. R
)  o.  R )  =  R )

Proof of Theorem relcoi2
StepHypRef Expression
1 dmrnssfld 4987 . . . 4  |-  ( dom 
R  u.  ran  R
)  C_  U. U. R
2 unss 3378 . . . . 5  |-  ( ( dom  R  C_  U. U. R  /\  ran  R  C_  U.
U. R )  <->  ( dom  R  u.  ran  R ) 
C_  U. U. R )
3 simpr 110 . . . . 5  |-  ( ( dom  R  C_  U. U. R  /\  ran  R  C_  U.
U. R )  ->  ran  R  C_  U. U. R
)
42, 3sylbir 135 . . . 4  |-  ( ( dom  R  u.  ran  R )  C_  U. U. R  ->  ran  R  C_  U. U. R )
51, 4ax-mp 5 . . 3  |-  ran  R  C_ 
U. U. R
6 cores 5232 . . 3  |-  ( ran 
R  C_  U. U. R  ->  ( (  _I  |`  U. U. R )  o.  R
)  =  (  _I  o.  R ) )
75, 6mp1i 10 . 2  |-  ( Rel 
R  ->  ( (  _I  |`  U. U. R
)  o.  R )  =  (  _I  o.  R ) )
8 coi2 5245 . 2  |-  ( Rel 
R  ->  (  _I  o.  R )  =  R )
97, 8eqtrd 2262 1  |-  ( Rel 
R  ->  ( (  _I  |`  U. U. R
)  o.  R )  =  R )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    u. cun 3195    C_ wss 3197   U.cuni 3888    _I cid 4379   dom cdm 4719   ran crn 4720    |` cres 4721    o. ccom 4723   Rel wrel 4724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator