Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > relcoi2 | Unicode version |
Description: Composition with the identity relation restricted to a relation's field. (Contributed by FL, 2-May-2011.) |
Ref | Expression |
---|---|
relcoi2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmrnssfld 4883 | . . . 4 | |
2 | unss 3307 | . . . . 5 | |
3 | simpr 110 | . . . . 5 | |
4 | 2, 3 | sylbir 135 | . . . 4 |
5 | 1, 4 | ax-mp 5 | . . 3 |
6 | cores 5124 | . . 3 | |
7 | 5, 6 | mp1i 10 | . 2 |
8 | coi2 5137 | . 2 | |
9 | 7, 8 | eqtrd 2208 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wceq 1353 cun 3125 wss 3127 cuni 3805 cid 4282 cdm 4620 crn 4621 cres 4622 ccom 4624 wrel 4625 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |