ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relcoi2 Unicode version

Theorem relcoi2 5200
Description: Composition with the identity relation restricted to a relation's field. (Contributed by FL, 2-May-2011.)
Assertion
Ref Expression
relcoi2  |-  ( Rel 
R  ->  ( (  _I  |`  U. U. R
)  o.  R )  =  R )

Proof of Theorem relcoi2
StepHypRef Expression
1 dmrnssfld 4929 . . . 4  |-  ( dom 
R  u.  ran  R
)  C_  U. U. R
2 unss 3337 . . . . 5  |-  ( ( dom  R  C_  U. U. R  /\  ran  R  C_  U.
U. R )  <->  ( dom  R  u.  ran  R ) 
C_  U. U. R )
3 simpr 110 . . . . 5  |-  ( ( dom  R  C_  U. U. R  /\  ran  R  C_  U.
U. R )  ->  ran  R  C_  U. U. R
)
42, 3sylbir 135 . . . 4  |-  ( ( dom  R  u.  ran  R )  C_  U. U. R  ->  ran  R  C_  U. U. R )
51, 4ax-mp 5 . . 3  |-  ran  R  C_ 
U. U. R
6 cores 5173 . . 3  |-  ( ran 
R  C_  U. U. R  ->  ( (  _I  |`  U. U. R )  o.  R
)  =  (  _I  o.  R ) )
75, 6mp1i 10 . 2  |-  ( Rel 
R  ->  ( (  _I  |`  U. U. R
)  o.  R )  =  (  _I  o.  R ) )
8 coi2 5186 . 2  |-  ( Rel 
R  ->  (  _I  o.  R )  =  R )
97, 8eqtrd 2229 1  |-  ( Rel 
R  ->  ( (  _I  |`  U. U. R
)  o.  R )  =  R )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    u. cun 3155    C_ wss 3157   U.cuni 3839    _I cid 4323   dom cdm 4663   ran crn 4664    |` cres 4665    o. ccom 4667   Rel wrel 4668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator