| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > relcoi2 | GIF version | ||
| Description: Composition with the identity relation restricted to a relation's field. (Contributed by FL, 2-May-2011.) |
| Ref | Expression |
|---|---|
| relcoi2 | ⊢ (Rel 𝑅 → (( I ↾ ∪ ∪ 𝑅) ∘ 𝑅) = 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmrnssfld 4939 | . . . 4 ⊢ (dom 𝑅 ∪ ran 𝑅) ⊆ ∪ ∪ 𝑅 | |
| 2 | unss 3346 | . . . . 5 ⊢ ((dom 𝑅 ⊆ ∪ ∪ 𝑅 ∧ ran 𝑅 ⊆ ∪ ∪ 𝑅) ↔ (dom 𝑅 ∪ ran 𝑅) ⊆ ∪ ∪ 𝑅) | |
| 3 | simpr 110 | . . . . 5 ⊢ ((dom 𝑅 ⊆ ∪ ∪ 𝑅 ∧ ran 𝑅 ⊆ ∪ ∪ 𝑅) → ran 𝑅 ⊆ ∪ ∪ 𝑅) | |
| 4 | 2, 3 | sylbir 135 | . . . 4 ⊢ ((dom 𝑅 ∪ ran 𝑅) ⊆ ∪ ∪ 𝑅 → ran 𝑅 ⊆ ∪ ∪ 𝑅) |
| 5 | 1, 4 | ax-mp 5 | . . 3 ⊢ ran 𝑅 ⊆ ∪ ∪ 𝑅 |
| 6 | cores 5183 | . . 3 ⊢ (ran 𝑅 ⊆ ∪ ∪ 𝑅 → (( I ↾ ∪ ∪ 𝑅) ∘ 𝑅) = ( I ∘ 𝑅)) | |
| 7 | 5, 6 | mp1i 10 | . 2 ⊢ (Rel 𝑅 → (( I ↾ ∪ ∪ 𝑅) ∘ 𝑅) = ( I ∘ 𝑅)) |
| 8 | coi2 5196 | . 2 ⊢ (Rel 𝑅 → ( I ∘ 𝑅) = 𝑅) | |
| 9 | 7, 8 | eqtrd 2237 | 1 ⊢ (Rel 𝑅 → (( I ↾ ∪ ∪ 𝑅) ∘ 𝑅) = 𝑅) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1372 ∪ cun 3163 ⊆ wss 3165 ∪ cuni 3849 I cid 4333 dom cdm 4673 ran crn 4674 ↾ cres 4675 ∘ ccom 4677 Rel wrel 4678 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-id 4338 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |