ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relcoi2 GIF version

Theorem relcoi2 5258
Description: Composition with the identity relation restricted to a relation's field. (Contributed by FL, 2-May-2011.)
Assertion
Ref Expression
relcoi2 (Rel 𝑅 → (( I ↾ 𝑅) ∘ 𝑅) = 𝑅)

Proof of Theorem relcoi2
StepHypRef Expression
1 dmrnssfld 4986 . . . 4 (dom 𝑅 ∪ ran 𝑅) ⊆ 𝑅
2 unss 3378 . . . . 5 ((dom 𝑅 𝑅 ∧ ran 𝑅 𝑅) ↔ (dom 𝑅 ∪ ran 𝑅) ⊆ 𝑅)
3 simpr 110 . . . . 5 ((dom 𝑅 𝑅 ∧ ran 𝑅 𝑅) → ran 𝑅 𝑅)
42, 3sylbir 135 . . . 4 ((dom 𝑅 ∪ ran 𝑅) ⊆ 𝑅 → ran 𝑅 𝑅)
51, 4ax-mp 5 . . 3 ran 𝑅 𝑅
6 cores 5231 . . 3 (ran 𝑅 𝑅 → (( I ↾ 𝑅) ∘ 𝑅) = ( I ∘ 𝑅))
75, 6mp1i 10 . 2 (Rel 𝑅 → (( I ↾ 𝑅) ∘ 𝑅) = ( I ∘ 𝑅))
8 coi2 5244 . 2 (Rel 𝑅 → ( I ∘ 𝑅) = 𝑅)
97, 8eqtrd 2262 1 (Rel 𝑅 → (( I ↾ 𝑅) ∘ 𝑅) = 𝑅)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  cun 3195  wss 3197   cuni 3887   I cid 4378  dom cdm 4718  ran crn 4719  cres 4720  ccom 4722  Rel wrel 4723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator