ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relcoi2 GIF version

Theorem relcoi2 5222
Description: Composition with the identity relation restricted to a relation's field. (Contributed by FL, 2-May-2011.)
Assertion
Ref Expression
relcoi2 (Rel 𝑅 → (( I ↾ 𝑅) ∘ 𝑅) = 𝑅)

Proof of Theorem relcoi2
StepHypRef Expression
1 dmrnssfld 4950 . . . 4 (dom 𝑅 ∪ ran 𝑅) ⊆ 𝑅
2 unss 3351 . . . . 5 ((dom 𝑅 𝑅 ∧ ran 𝑅 𝑅) ↔ (dom 𝑅 ∪ ran 𝑅) ⊆ 𝑅)
3 simpr 110 . . . . 5 ((dom 𝑅 𝑅 ∧ ran 𝑅 𝑅) → ran 𝑅 𝑅)
42, 3sylbir 135 . . . 4 ((dom 𝑅 ∪ ran 𝑅) ⊆ 𝑅 → ran 𝑅 𝑅)
51, 4ax-mp 5 . . 3 ran 𝑅 𝑅
6 cores 5195 . . 3 (ran 𝑅 𝑅 → (( I ↾ 𝑅) ∘ 𝑅) = ( I ∘ 𝑅))
75, 6mp1i 10 . 2 (Rel 𝑅 → (( I ↾ 𝑅) ∘ 𝑅) = ( I ∘ 𝑅))
8 coi2 5208 . 2 (Rel 𝑅 → ( I ∘ 𝑅) = 𝑅)
97, 8eqtrd 2239 1 (Rel 𝑅 → (( I ↾ 𝑅) ∘ 𝑅) = 𝑅)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  cun 3168  wss 3170   cuni 3856   I cid 4343  dom cdm 4683  ran crn 4684  cres 4685  ccom 4687  Rel wrel 4688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator