![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > relcoi2 | GIF version |
Description: Composition with the identity relation restricted to a relation's field. (Contributed by FL, 2-May-2011.) |
Ref | Expression |
---|---|
relcoi2 | ⊢ (Rel 𝑅 → (( I ↾ ∪ ∪ 𝑅) ∘ 𝑅) = 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmrnssfld 4709 | . . . 4 ⊢ (dom 𝑅 ∪ ran 𝑅) ⊆ ∪ ∪ 𝑅 | |
2 | unss 3175 | . . . . 5 ⊢ ((dom 𝑅 ⊆ ∪ ∪ 𝑅 ∧ ran 𝑅 ⊆ ∪ ∪ 𝑅) ↔ (dom 𝑅 ∪ ran 𝑅) ⊆ ∪ ∪ 𝑅) | |
3 | simpr 109 | . . . . 5 ⊢ ((dom 𝑅 ⊆ ∪ ∪ 𝑅 ∧ ran 𝑅 ⊆ ∪ ∪ 𝑅) → ran 𝑅 ⊆ ∪ ∪ 𝑅) | |
4 | 2, 3 | sylbir 134 | . . . 4 ⊢ ((dom 𝑅 ∪ ran 𝑅) ⊆ ∪ ∪ 𝑅 → ran 𝑅 ⊆ ∪ ∪ 𝑅) |
5 | 1, 4 | ax-mp 7 | . . 3 ⊢ ran 𝑅 ⊆ ∪ ∪ 𝑅 |
6 | cores 4947 | . . 3 ⊢ (ran 𝑅 ⊆ ∪ ∪ 𝑅 → (( I ↾ ∪ ∪ 𝑅) ∘ 𝑅) = ( I ∘ 𝑅)) | |
7 | 5, 6 | mp1i 10 | . 2 ⊢ (Rel 𝑅 → (( I ↾ ∪ ∪ 𝑅) ∘ 𝑅) = ( I ∘ 𝑅)) |
8 | coi2 4960 | . 2 ⊢ (Rel 𝑅 → ( I ∘ 𝑅) = 𝑅) | |
9 | 7, 8 | eqtrd 2121 | 1 ⊢ (Rel 𝑅 → (( I ↾ ∪ ∪ 𝑅) ∘ 𝑅) = 𝑅) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1290 ∪ cun 2998 ⊆ wss 3000 ∪ cuni 3659 I cid 4124 dom cdm 4451 ran crn 4452 ↾ cres 4453 ∘ ccom 4455 Rel wrel 4456 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-14 1451 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 ax-sep 3963 ax-pow 4015 ax-pr 4045 |
This theorem depends on definitions: df-bi 116 df-3an 927 df-tru 1293 df-nf 1396 df-sb 1694 df-eu 1952 df-mo 1953 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ral 2365 df-rex 2366 df-v 2622 df-un 3004 df-in 3006 df-ss 3013 df-pw 3435 df-sn 3456 df-pr 3457 df-op 3459 df-uni 3660 df-br 3852 df-opab 3906 df-id 4129 df-xp 4457 df-rel 4458 df-cnv 4459 df-co 4460 df-dm 4461 df-rn 4462 df-res 4463 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |