ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relcoi2 GIF version

Theorem relcoi2 5197
Description: Composition with the identity relation restricted to a relation's field. (Contributed by FL, 2-May-2011.)
Assertion
Ref Expression
relcoi2 (Rel 𝑅 → (( I ↾ 𝑅) ∘ 𝑅) = 𝑅)

Proof of Theorem relcoi2
StepHypRef Expression
1 dmrnssfld 4926 . . . 4 (dom 𝑅 ∪ ran 𝑅) ⊆ 𝑅
2 unss 3334 . . . . 5 ((dom 𝑅 𝑅 ∧ ran 𝑅 𝑅) ↔ (dom 𝑅 ∪ ran 𝑅) ⊆ 𝑅)
3 simpr 110 . . . . 5 ((dom 𝑅 𝑅 ∧ ran 𝑅 𝑅) → ran 𝑅 𝑅)
42, 3sylbir 135 . . . 4 ((dom 𝑅 ∪ ran 𝑅) ⊆ 𝑅 → ran 𝑅 𝑅)
51, 4ax-mp 5 . . 3 ran 𝑅 𝑅
6 cores 5170 . . 3 (ran 𝑅 𝑅 → (( I ↾ 𝑅) ∘ 𝑅) = ( I ∘ 𝑅))
75, 6mp1i 10 . 2 (Rel 𝑅 → (( I ↾ 𝑅) ∘ 𝑅) = ( I ∘ 𝑅))
8 coi2 5183 . 2 (Rel 𝑅 → ( I ∘ 𝑅) = 𝑅)
97, 8eqtrd 2226 1 (Rel 𝑅 → (( I ↾ 𝑅) ∘ 𝑅) = 𝑅)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  cun 3152  wss 3154   cuni 3836   I cid 4320  dom cdm 4660  ran crn 4661  cres 4662  ccom 4664  Rel wrel 4665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator