ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relelrnb GIF version

Theorem relelrnb 4842
Description: Membership in a range. (Contributed by Mario Carneiro, 5-Nov-2015.)
Assertion
Ref Expression
relelrnb (Rel 𝑅 → (𝐴 ∈ ran 𝑅 ↔ ∃𝑥 𝑥𝑅𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑅

Proof of Theorem relelrnb
StepHypRef Expression
1 elrng 4795 . . 3 (𝐴 ∈ ran 𝑅 → (𝐴 ∈ ran 𝑅 ↔ ∃𝑥 𝑥𝑅𝐴))
21ibi 175 . 2 (𝐴 ∈ ran 𝑅 → ∃𝑥 𝑥𝑅𝐴)
3 relelrn 4840 . . . 4 ((Rel 𝑅𝑥𝑅𝐴) → 𝐴 ∈ ran 𝑅)
43ex 114 . . 3 (Rel 𝑅 → (𝑥𝑅𝐴𝐴 ∈ ran 𝑅))
54exlimdv 1807 . 2 (Rel 𝑅 → (∃𝑥 𝑥𝑅𝐴𝐴 ∈ ran 𝑅))
62, 5impbid2 142 1 (Rel 𝑅 → (𝐴 ∈ ran 𝑅 ↔ ∃𝑥 𝑥𝑅𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wex 1480  wcel 2136   class class class wbr 3982  ran crn 4605  Rel wrel 4609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-rel 4611  df-cnv 4612  df-dm 4614  df-rn 4615
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator