ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relelrnb GIF version

Theorem relelrnb 4849
Description: Membership in a range. (Contributed by Mario Carneiro, 5-Nov-2015.)
Assertion
Ref Expression
relelrnb (Rel 𝑅 → (𝐴 ∈ ran 𝑅 ↔ ∃𝑥 𝑥𝑅𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑅

Proof of Theorem relelrnb
StepHypRef Expression
1 elrng 4802 . . 3 (𝐴 ∈ ran 𝑅 → (𝐴 ∈ ran 𝑅 ↔ ∃𝑥 𝑥𝑅𝐴))
21ibi 175 . 2 (𝐴 ∈ ran 𝑅 → ∃𝑥 𝑥𝑅𝐴)
3 relelrn 4847 . . . 4 ((Rel 𝑅𝑥𝑅𝐴) → 𝐴 ∈ ran 𝑅)
43ex 114 . . 3 (Rel 𝑅 → (𝑥𝑅𝐴𝐴 ∈ ran 𝑅))
54exlimdv 1812 . 2 (Rel 𝑅 → (∃𝑥 𝑥𝑅𝐴𝐴 ∈ ran 𝑅))
62, 5impbid2 142 1 (Rel 𝑅 → (𝐴 ∈ ran 𝑅 ↔ ∃𝑥 𝑥𝑅𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wex 1485  wcel 2141   class class class wbr 3989  ran crn 4612  Rel wrel 4616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-xp 4617  df-rel 4618  df-cnv 4619  df-dm 4621  df-rn 4622
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator