ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reli GIF version

Theorem reli 4850
Description: The identity relation is a relation. Part of Exercise 4.12(p) of [Mendelson] p. 235. (Contributed by NM, 26-Apr-1998.) (Revised by Mario Carneiro, 21-Dec-2013.)
Assertion
Ref Expression
reli Rel I

Proof of Theorem reli
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-id 4383 . 2 I = {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦}
21relopabi 4846 1 Rel I
Colors of variables: wff set class
Syntax hints:   = wceq 1395   I cid 4378  Rel wrel 4723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725
This theorem is referenced by:  ideqg  4872  issetid  4875  iss  5050  intirr  5114  funi  5349  f1ovi  5611  idssen  6926
  Copyright terms: Public domain W3C validator