| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elopabi | Unicode version | ||
| Description: A consequence of membership in an ordered-pair class abstraction, using ordered pair extractors. (Contributed by NM, 29-Aug-2006.) |
| Ref | Expression |
|---|---|
| elopabi.1 |
|
| elopabi.2 |
|
| Ref | Expression |
|---|---|
| elopabi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relopab 4805 |
. . . 4
| |
| 2 | 1st2nd 6269 |
. . . 4
| |
| 3 | 1, 2 | mpan 424 |
. . 3
|
| 4 | id 19 |
. . 3
| |
| 5 | 3, 4 | eqeltrrd 2283 |
. 2
|
| 6 | 1stexg 6255 |
. . 3
| |
| 7 | 2ndexg 6256 |
. . 3
| |
| 8 | elopabi.1 |
. . . 4
| |
| 9 | elopabi.2 |
. . . 4
| |
| 10 | 8, 9 | opelopabg 4315 |
. . 3
|
| 11 | 6, 7, 10 | syl2anc 411 |
. 2
|
| 12 | 5, 11 | mpbid 147 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-mpt 4108 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-fo 5278 df-fv 5280 df-1st 6228 df-2nd 6229 |
| This theorem is referenced by: exmidapne 7374 aprcl 8721 aptap 8725 |
| Copyright terms: Public domain | W3C validator |