ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elopabi Unicode version

Theorem elopabi 6155
Description: A consequence of membership in an ordered-pair class abstraction, using ordered pair extractors. (Contributed by NM, 29-Aug-2006.)
Hypotheses
Ref Expression
elopabi.1  |-  ( x  =  ( 1st `  A
)  ->  ( ph  <->  ps ) )
elopabi.2  |-  ( y  =  ( 2nd `  A
)  ->  ( ps  <->  ch ) )
Assertion
Ref Expression
elopabi  |-  ( A  e.  { <. x ,  y >.  |  ph }  ->  ch )
Distinct variable groups:    x, y, A    ch, x, y
Allowed substitution hints:    ph( x, y)    ps( x, y)

Proof of Theorem elopabi
StepHypRef Expression
1 relopab 4725 . . . 4  |-  Rel  { <. x ,  y >.  |  ph }
2 1st2nd 6141 . . . 4  |-  ( ( Rel  { <. x ,  y >.  |  ph }  /\  A  e.  { <. x ,  y >.  |  ph } )  ->  A  =  <. ( 1st `  A ) ,  ( 2nd `  A )
>. )
31, 2mpan 421 . . 3  |-  ( A  e.  { <. x ,  y >.  |  ph }  ->  A  =  <. ( 1st `  A ) ,  ( 2nd `  A
) >. )
4 id 19 . . 3  |-  ( A  e.  { <. x ,  y >.  |  ph }  ->  A  e.  { <. x ,  y >.  |  ph } )
53, 4eqeltrrd 2242 . 2  |-  ( A  e.  { <. x ,  y >.  |  ph }  ->  <. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  { <. x ,  y >.  |  ph } )
6 1stexg 6127 . . 3  |-  ( A  e.  { <. x ,  y >.  |  ph }  ->  ( 1st `  A
)  e.  _V )
7 2ndexg 6128 . . 3  |-  ( A  e.  { <. x ,  y >.  |  ph }  ->  ( 2nd `  A
)  e.  _V )
8 elopabi.1 . . . 4  |-  ( x  =  ( 1st `  A
)  ->  ( ph  <->  ps ) )
9 elopabi.2 . . . 4  |-  ( y  =  ( 2nd `  A
)  ->  ( ps  <->  ch ) )
108, 9opelopabg 4240 . . 3  |-  ( ( ( 1st `  A
)  e.  _V  /\  ( 2nd `  A )  e.  _V )  -> 
( <. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  { <. x ,  y >.  |  ph }  <->  ch )
)
116, 7, 10syl2anc 409 . 2  |-  ( A  e.  { <. x ,  y >.  |  ph }  ->  ( <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  { <. x ,  y >.  |  ph } 
<->  ch ) )
125, 11mpbid 146 1  |-  ( A  e.  { <. x ,  y >.  |  ph }  ->  ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1342    e. wcel 2135   _Vcvv 2721   <.cop 3573   {copab 4036   Rel wrel 4603   ` cfv 5182   1stc1st 6098   2ndc2nd 6099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4094  ax-pow 4147  ax-pr 4181  ax-un 4405
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ral 2447  df-rex 2448  df-v 2723  df-sbc 2947  df-un 3115  df-in 3117  df-ss 3124  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-br 3977  df-opab 4038  df-mpt 4039  df-id 4265  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-fo 5188  df-fv 5190  df-1st 6100  df-2nd 6101
This theorem is referenced by:  aprcl  8535
  Copyright terms: Public domain W3C validator