ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elopabi Unicode version

Theorem elopabi 6248
Description: A consequence of membership in an ordered-pair class abstraction, using ordered pair extractors. (Contributed by NM, 29-Aug-2006.)
Hypotheses
Ref Expression
elopabi.1  |-  ( x  =  ( 1st `  A
)  ->  ( ph  <->  ps ) )
elopabi.2  |-  ( y  =  ( 2nd `  A
)  ->  ( ps  <->  ch ) )
Assertion
Ref Expression
elopabi  |-  ( A  e.  { <. x ,  y >.  |  ph }  ->  ch )
Distinct variable groups:    x, y, A    ch, x, y
Allowed substitution hints:    ph( x, y)    ps( x, y)

Proof of Theorem elopabi
StepHypRef Expression
1 relopab 4788 . . . 4  |-  Rel  { <. x ,  y >.  |  ph }
2 1st2nd 6234 . . . 4  |-  ( ( Rel  { <. x ,  y >.  |  ph }  /\  A  e.  { <. x ,  y >.  |  ph } )  ->  A  =  <. ( 1st `  A ) ,  ( 2nd `  A )
>. )
31, 2mpan 424 . . 3  |-  ( A  e.  { <. x ,  y >.  |  ph }  ->  A  =  <. ( 1st `  A ) ,  ( 2nd `  A
) >. )
4 id 19 . . 3  |-  ( A  e.  { <. x ,  y >.  |  ph }  ->  A  e.  { <. x ,  y >.  |  ph } )
53, 4eqeltrrd 2271 . 2  |-  ( A  e.  { <. x ,  y >.  |  ph }  ->  <. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  { <. x ,  y >.  |  ph } )
6 1stexg 6220 . . 3  |-  ( A  e.  { <. x ,  y >.  |  ph }  ->  ( 1st `  A
)  e.  _V )
7 2ndexg 6221 . . 3  |-  ( A  e.  { <. x ,  y >.  |  ph }  ->  ( 2nd `  A
)  e.  _V )
8 elopabi.1 . . . 4  |-  ( x  =  ( 1st `  A
)  ->  ( ph  <->  ps ) )
9 elopabi.2 . . . 4  |-  ( y  =  ( 2nd `  A
)  ->  ( ps  <->  ch ) )
108, 9opelopabg 4298 . . 3  |-  ( ( ( 1st `  A
)  e.  _V  /\  ( 2nd `  A )  e.  _V )  -> 
( <. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  { <. x ,  y >.  |  ph }  <->  ch )
)
116, 7, 10syl2anc 411 . 2  |-  ( A  e.  { <. x ,  y >.  |  ph }  ->  ( <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  { <. x ,  y >.  |  ph } 
<->  ch ) )
125, 11mpbid 147 1  |-  ( A  e.  { <. x ,  y >.  |  ph }  ->  ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364    e. wcel 2164   _Vcvv 2760   <.cop 3621   {copab 4089   Rel wrel 4664   ` cfv 5254   1stc1st 6191   2ndc2nd 6192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fo 5260  df-fv 5262  df-1st 6193  df-2nd 6194
This theorem is referenced by:  exmidapne  7320  aprcl  8665  aptap  8669
  Copyright terms: Public domain W3C validator