ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elopabi Unicode version

Theorem elopabi 6283
Description: A consequence of membership in an ordered-pair class abstraction, using ordered pair extractors. (Contributed by NM, 29-Aug-2006.)
Hypotheses
Ref Expression
elopabi.1  |-  ( x  =  ( 1st `  A
)  ->  ( ph  <->  ps ) )
elopabi.2  |-  ( y  =  ( 2nd `  A
)  ->  ( ps  <->  ch ) )
Assertion
Ref Expression
elopabi  |-  ( A  e.  { <. x ,  y >.  |  ph }  ->  ch )
Distinct variable groups:    x, y, A    ch, x, y
Allowed substitution hints:    ph( x, y)    ps( x, y)

Proof of Theorem elopabi
StepHypRef Expression
1 relopab 4805 . . . 4  |-  Rel  { <. x ,  y >.  |  ph }
2 1st2nd 6269 . . . 4  |-  ( ( Rel  { <. x ,  y >.  |  ph }  /\  A  e.  { <. x ,  y >.  |  ph } )  ->  A  =  <. ( 1st `  A ) ,  ( 2nd `  A )
>. )
31, 2mpan 424 . . 3  |-  ( A  e.  { <. x ,  y >.  |  ph }  ->  A  =  <. ( 1st `  A ) ,  ( 2nd `  A
) >. )
4 id 19 . . 3  |-  ( A  e.  { <. x ,  y >.  |  ph }  ->  A  e.  { <. x ,  y >.  |  ph } )
53, 4eqeltrrd 2283 . 2  |-  ( A  e.  { <. x ,  y >.  |  ph }  ->  <. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  { <. x ,  y >.  |  ph } )
6 1stexg 6255 . . 3  |-  ( A  e.  { <. x ,  y >.  |  ph }  ->  ( 1st `  A
)  e.  _V )
7 2ndexg 6256 . . 3  |-  ( A  e.  { <. x ,  y >.  |  ph }  ->  ( 2nd `  A
)  e.  _V )
8 elopabi.1 . . . 4  |-  ( x  =  ( 1st `  A
)  ->  ( ph  <->  ps ) )
9 elopabi.2 . . . 4  |-  ( y  =  ( 2nd `  A
)  ->  ( ps  <->  ch ) )
108, 9opelopabg 4315 . . 3  |-  ( ( ( 1st `  A
)  e.  _V  /\  ( 2nd `  A )  e.  _V )  -> 
( <. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  { <. x ,  y >.  |  ph }  <->  ch )
)
116, 7, 10syl2anc 411 . 2  |-  ( A  e.  { <. x ,  y >.  |  ph }  ->  ( <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  { <. x ,  y >.  |  ph } 
<->  ch ) )
125, 11mpbid 147 1  |-  ( A  e.  { <. x ,  y >.  |  ph }  ->  ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373    e. wcel 2176   _Vcvv 2772   <.cop 3636   {copab 4105   Rel wrel 4681   ` cfv 5272   1stc1st 6226   2ndc2nd 6227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-fo 5278  df-fv 5280  df-1st 6228  df-2nd 6229
This theorem is referenced by:  exmidapne  7374  aprcl  8721  aptap  8725
  Copyright terms: Public domain W3C validator