ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relssi Unicode version

Theorem relssi 4590
Description: Inference from subclass principle for relations. (Contributed by NM, 31-Mar-1998.)
Hypotheses
Ref Expression
relssi.1  |-  Rel  A
relssi.2  |-  ( <.
x ,  y >.  e.  A  ->  <. x ,  y >.  e.  B
)
Assertion
Ref Expression
relssi  |-  A  C_  B
Distinct variable groups:    x, y, A   
x, B, y

Proof of Theorem relssi
StepHypRef Expression
1 relssi.1 . . 3  |-  Rel  A
2 ssrel 4587 . . 3  |-  ( Rel 
A  ->  ( A  C_  B  <->  A. x A. y
( <. x ,  y
>.  e.  A  ->  <. x ,  y >.  e.  B
) ) )
31, 2ax-mp 7 . 2  |-  ( A 
C_  B  <->  A. x A. y ( <. x ,  y >.  e.  A  -> 
<. x ,  y >.  e.  B ) )
4 relssi.2 . . 3  |-  ( <.
x ,  y >.  e.  A  ->  <. x ,  y >.  e.  B
)
54ax-gen 1408 . 2  |-  A. y
( <. x ,  y
>.  e.  A  ->  <. x ,  y >.  e.  B
)
63, 5mpgbir 1412 1  |-  A  C_  B
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   A.wal 1312    e. wcel 1463    C_ wss 3037   <.cop 3496   Rel wrel 4504
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4006  ax-pow 4058  ax-pr 4091
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-v 2659  df-un 3041  df-in 3043  df-ss 3050  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-opab 3950  df-xp 4505  df-rel 4506
This theorem is referenced by:  resiexg  4822  dftpos4  6114  enssdom  6610  idssen  6625  txuni2  12267
  Copyright terms: Public domain W3C validator