ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relssi Unicode version

Theorem relssi 4754
Description: Inference from subclass principle for relations. (Contributed by NM, 31-Mar-1998.)
Hypotheses
Ref Expression
relssi.1  |-  Rel  A
relssi.2  |-  ( <.
x ,  y >.  e.  A  ->  <. x ,  y >.  e.  B
)
Assertion
Ref Expression
relssi  |-  A  C_  B
Distinct variable groups:    x, y, A   
x, B, y

Proof of Theorem relssi
StepHypRef Expression
1 relssi.1 . . 3  |-  Rel  A
2 ssrel 4751 . . 3  |-  ( Rel 
A  ->  ( A  C_  B  <->  A. x A. y
( <. x ,  y
>.  e.  A  ->  <. x ,  y >.  e.  B
) ) )
31, 2ax-mp 5 . 2  |-  ( A 
C_  B  <->  A. x A. y ( <. x ,  y >.  e.  A  -> 
<. x ,  y >.  e.  B ) )
4 relssi.2 . . 3  |-  ( <.
x ,  y >.  e.  A  ->  <. x ,  y >.  e.  B
)
54ax-gen 1463 . 2  |-  A. y
( <. x ,  y
>.  e.  A  ->  <. x ,  y >.  e.  B
)
63, 5mpgbir 1467 1  |-  A  C_  B
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1362    e. wcel 2167    C_ wss 3157   <.cop 3625   Rel wrel 4668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-opab 4095  df-xp 4669  df-rel 4670
This theorem is referenced by:  resiexg  4991  dftpos4  6321  enssdom  6821  idssen  6836  txuni2  14492
  Copyright terms: Public domain W3C validator