ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relssdv GIF version

Theorem relssdv 4599
Description: Deduction from subclass principle for relations. (Contributed by NM, 11-Sep-2004.)
Hypotheses
Ref Expression
relssdv.1 (𝜑 → Rel 𝐴)
relssdv.2 (𝜑 → (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵))
Assertion
Ref Expression
relssdv (𝜑𝐴𝐵)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝜑,𝑥,𝑦

Proof of Theorem relssdv
StepHypRef Expression
1 relssdv.2 . . 3 (𝜑 → (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵))
21alrimivv 1829 . 2 (𝜑 → ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵))
3 relssdv.1 . . 3 (𝜑 → Rel 𝐴)
4 ssrel 4595 . . 3 (Rel 𝐴 → (𝐴𝐵 ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵)))
53, 4syl 14 . 2 (𝜑 → (𝐴𝐵 ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵)))
62, 5mpbird 166 1 (𝜑𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wal 1312  wcel 1463  wss 3039  cop 3498  Rel wrel 4512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-pow 4066  ax-pr 4099
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-v 2660  df-un 3043  df-in 3045  df-ss 3052  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-opab 3958  df-xp 4513  df-rel 4514
This theorem is referenced by:  relssres  4825  poirr2  4899  relssdmrn  5027  txdis1cn  12342
  Copyright terms: Public domain W3C validator