| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > resiexg | Unicode version | ||
| Description: The existence of a restricted identity function, proved without using the Axiom of Replacement. (Contributed by NM, 13-Jan-2007.) |
| Ref | Expression |
|---|---|
| resiexg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relres 4988 |
. . 3
| |
| 2 | simpr 110 |
. . . . 5
| |
| 3 | eleq1 2268 |
. . . . . 6
| |
| 4 | 3 | biimpa 296 |
. . . . 5
|
| 5 | 2, 4 | jca 306 |
. . . 4
|
| 6 | vex 2775 |
. . . . . 6
| |
| 7 | 6 | opelres 4965 |
. . . . 5
|
| 8 | df-br 4046 |
. . . . . . 7
| |
| 9 | 6 | ideq 4831 |
. . . . . . 7
|
| 10 | 8, 9 | bitr3i 186 |
. . . . . 6
|
| 11 | 10 | anbi1i 458 |
. . . . 5
|
| 12 | 7, 11 | bitri 184 |
. . . 4
|
| 13 | opelxp 4706 |
. . . 4
| |
| 14 | 5, 12, 13 | 3imtr4i 201 |
. . 3
|
| 15 | 1, 14 | relssi 4767 |
. 2
|
| 16 | xpexg 4790 |
. . 3
| |
| 17 | 16 | anidms 397 |
. 2
|
| 18 | ssexg 4184 |
. 2
| |
| 19 | 15, 17, 18 | sylancr 414 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-id 4341 df-xp 4682 df-rel 4683 df-res 4688 |
| This theorem is referenced by: ordiso 7140 omct 7221 ctssexmid 7254 ssomct 12849 ndxarg 12888 subctctexmid 15974 |
| Copyright terms: Public domain | W3C validator |