ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resiexg Unicode version

Theorem resiexg 4936
Description: The existence of a restricted identity function, proved without using the Axiom of Replacement. (Contributed by NM, 13-Jan-2007.)
Assertion
Ref Expression
resiexg  |-  ( A  e.  V  ->  (  _I  |`  A )  e. 
_V )

Proof of Theorem resiexg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relres 4919 . . 3  |-  Rel  (  _I  |`  A )
2 simpr 109 . . . . 5  |-  ( ( x  =  y  /\  x  e.  A )  ->  x  e.  A )
3 eleq1 2233 . . . . . 6  |-  ( x  =  y  ->  (
x  e.  A  <->  y  e.  A ) )
43biimpa 294 . . . . 5  |-  ( ( x  =  y  /\  x  e.  A )  ->  y  e.  A )
52, 4jca 304 . . . 4  |-  ( ( x  =  y  /\  x  e.  A )  ->  ( x  e.  A  /\  y  e.  A
) )
6 vex 2733 . . . . . 6  |-  y  e. 
_V
76opelres 4896 . . . . 5  |-  ( <.
x ,  y >.  e.  (  _I  |`  A )  <-> 
( <. x ,  y
>.  e.  _I  /\  x  e.  A ) )
8 df-br 3990 . . . . . . 7  |-  ( x  _I  y  <->  <. x ,  y >.  e.  _I  )
96ideq 4763 . . . . . . 7  |-  ( x  _I  y  <->  x  =  y )
108, 9bitr3i 185 . . . . . 6  |-  ( <.
x ,  y >.  e.  _I  <->  x  =  y
)
1110anbi1i 455 . . . . 5  |-  ( (
<. x ,  y >.  e.  _I  /\  x  e.  A )  <->  ( x  =  y  /\  x  e.  A ) )
127, 11bitri 183 . . . 4  |-  ( <.
x ,  y >.  e.  (  _I  |`  A )  <-> 
( x  =  y  /\  x  e.  A
) )
13 opelxp 4641 . . . 4  |-  ( <.
x ,  y >.  e.  ( A  X.  A
)  <->  ( x  e.  A  /\  y  e.  A ) )
145, 12, 133imtr4i 200 . . 3  |-  ( <.
x ,  y >.  e.  (  _I  |`  A )  ->  <. x ,  y
>.  e.  ( A  X.  A ) )
151, 14relssi 4702 . 2  |-  (  _I  |`  A )  C_  ( A  X.  A )
16 xpexg 4725 . . 3  |-  ( ( A  e.  V  /\  A  e.  V )  ->  ( A  X.  A
)  e.  _V )
1716anidms 395 . 2  |-  ( A  e.  V  ->  ( A  X.  A )  e. 
_V )
18 ssexg 4128 . 2  |-  ( ( (  _I  |`  A ) 
C_  ( A  X.  A )  /\  ( A  X.  A )  e. 
_V )  ->  (  _I  |`  A )  e. 
_V )
1915, 17, 18sylancr 412 1  |-  ( A  e.  V  ->  (  _I  |`  A )  e. 
_V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 2141   _Vcvv 2730    C_ wss 3121   <.cop 3586   class class class wbr 3989    _I cid 4273    X. cxp 4609    |` cres 4613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-res 4623
This theorem is referenced by:  ordiso  7013  omct  7094  ctssexmid  7126  ssomct  12400  ndxarg  12439  subctctexmid  14034
  Copyright terms: Public domain W3C validator