ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resiexg Unicode version

Theorem resiexg 4910
Description: The existence of a restricted identity function, proved without using the Axiom of Replacement. (Contributed by NM, 13-Jan-2007.)
Assertion
Ref Expression
resiexg  |-  ( A  e.  V  ->  (  _I  |`  A )  e. 
_V )

Proof of Theorem resiexg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relres 4893 . . 3  |-  Rel  (  _I  |`  A )
2 simpr 109 . . . . 5  |-  ( ( x  =  y  /\  x  e.  A )  ->  x  e.  A )
3 eleq1 2220 . . . . . 6  |-  ( x  =  y  ->  (
x  e.  A  <->  y  e.  A ) )
43biimpa 294 . . . . 5  |-  ( ( x  =  y  /\  x  e.  A )  ->  y  e.  A )
52, 4jca 304 . . . 4  |-  ( ( x  =  y  /\  x  e.  A )  ->  ( x  e.  A  /\  y  e.  A
) )
6 vex 2715 . . . . . 6  |-  y  e. 
_V
76opelres 4870 . . . . 5  |-  ( <.
x ,  y >.  e.  (  _I  |`  A )  <-> 
( <. x ,  y
>.  e.  _I  /\  x  e.  A ) )
8 df-br 3966 . . . . . . 7  |-  ( x  _I  y  <->  <. x ,  y >.  e.  _I  )
96ideq 4737 . . . . . . 7  |-  ( x  _I  y  <->  x  =  y )
108, 9bitr3i 185 . . . . . 6  |-  ( <.
x ,  y >.  e.  _I  <->  x  =  y
)
1110anbi1i 454 . . . . 5  |-  ( (
<. x ,  y >.  e.  _I  /\  x  e.  A )  <->  ( x  =  y  /\  x  e.  A ) )
127, 11bitri 183 . . . 4  |-  ( <.
x ,  y >.  e.  (  _I  |`  A )  <-> 
( x  =  y  /\  x  e.  A
) )
13 opelxp 4615 . . . 4  |-  ( <.
x ,  y >.  e.  ( A  X.  A
)  <->  ( x  e.  A  /\  y  e.  A ) )
145, 12, 133imtr4i 200 . . 3  |-  ( <.
x ,  y >.  e.  (  _I  |`  A )  ->  <. x ,  y
>.  e.  ( A  X.  A ) )
151, 14relssi 4676 . 2  |-  (  _I  |`  A )  C_  ( A  X.  A )
16 xpexg 4699 . . 3  |-  ( ( A  e.  V  /\  A  e.  V )  ->  ( A  X.  A
)  e.  _V )
1716anidms 395 . 2  |-  ( A  e.  V  ->  ( A  X.  A )  e. 
_V )
18 ssexg 4103 . 2  |-  ( ( (  _I  |`  A ) 
C_  ( A  X.  A )  /\  ( A  X.  A )  e. 
_V )  ->  (  _I  |`  A )  e. 
_V )
1915, 17, 18sylancr 411 1  |-  ( A  e.  V  ->  (  _I  |`  A )  e. 
_V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 2128   _Vcvv 2712    C_ wss 3102   <.cop 3563   class class class wbr 3965    _I cid 4248    X. cxp 4583    |` cres 4587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169  ax-un 4393
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-v 2714  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-br 3966  df-opab 4026  df-id 4253  df-xp 4591  df-rel 4592  df-res 4597
This theorem is referenced by:  ordiso  6975  omct  7056  ctssexmid  7088  ssomct  12161  ndxarg  12200  subctctexmid  13560
  Copyright terms: Public domain W3C validator