ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resiexg Unicode version

Theorem resiexg 4928
Description: The existence of a restricted identity function, proved without using the Axiom of Replacement. (Contributed by NM, 13-Jan-2007.)
Assertion
Ref Expression
resiexg  |-  ( A  e.  V  ->  (  _I  |`  A )  e. 
_V )

Proof of Theorem resiexg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relres 4911 . . 3  |-  Rel  (  _I  |`  A )
2 simpr 109 . . . . 5  |-  ( ( x  =  y  /\  x  e.  A )  ->  x  e.  A )
3 eleq1 2228 . . . . . 6  |-  ( x  =  y  ->  (
x  e.  A  <->  y  e.  A ) )
43biimpa 294 . . . . 5  |-  ( ( x  =  y  /\  x  e.  A )  ->  y  e.  A )
52, 4jca 304 . . . 4  |-  ( ( x  =  y  /\  x  e.  A )  ->  ( x  e.  A  /\  y  e.  A
) )
6 vex 2728 . . . . . 6  |-  y  e. 
_V
76opelres 4888 . . . . 5  |-  ( <.
x ,  y >.  e.  (  _I  |`  A )  <-> 
( <. x ,  y
>.  e.  _I  /\  x  e.  A ) )
8 df-br 3982 . . . . . . 7  |-  ( x  _I  y  <->  <. x ,  y >.  e.  _I  )
96ideq 4755 . . . . . . 7  |-  ( x  _I  y  <->  x  =  y )
108, 9bitr3i 185 . . . . . 6  |-  ( <.
x ,  y >.  e.  _I  <->  x  =  y
)
1110anbi1i 454 . . . . 5  |-  ( (
<. x ,  y >.  e.  _I  /\  x  e.  A )  <->  ( x  =  y  /\  x  e.  A ) )
127, 11bitri 183 . . . 4  |-  ( <.
x ,  y >.  e.  (  _I  |`  A )  <-> 
( x  =  y  /\  x  e.  A
) )
13 opelxp 4633 . . . 4  |-  ( <.
x ,  y >.  e.  ( A  X.  A
)  <->  ( x  e.  A  /\  y  e.  A ) )
145, 12, 133imtr4i 200 . . 3  |-  ( <.
x ,  y >.  e.  (  _I  |`  A )  ->  <. x ,  y
>.  e.  ( A  X.  A ) )
151, 14relssi 4694 . 2  |-  (  _I  |`  A )  C_  ( A  X.  A )
16 xpexg 4717 . . 3  |-  ( ( A  e.  V  /\  A  e.  V )  ->  ( A  X.  A
)  e.  _V )
1716anidms 395 . 2  |-  ( A  e.  V  ->  ( A  X.  A )  e. 
_V )
18 ssexg 4120 . 2  |-  ( ( (  _I  |`  A ) 
C_  ( A  X.  A )  /\  ( A  X.  A )  e. 
_V )  ->  (  _I  |`  A )  e. 
_V )
1915, 17, 18sylancr 411 1  |-  ( A  e.  V  ->  (  _I  |`  A )  e. 
_V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 2136   _Vcvv 2725    C_ wss 3115   <.cop 3578   class class class wbr 3981    _I cid 4265    X. cxp 4601    |` cres 4605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4099  ax-pow 4152  ax-pr 4186  ax-un 4410
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ral 2448  df-rex 2449  df-v 2727  df-un 3119  df-in 3121  df-ss 3128  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-uni 3789  df-br 3982  df-opab 4043  df-id 4270  df-xp 4609  df-rel 4610  df-res 4615
This theorem is referenced by:  ordiso  6997  omct  7078  ctssexmid  7110  ssomct  12374  ndxarg  12413  subctctexmid  13841
  Copyright terms: Public domain W3C validator