ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resiexg Unicode version

Theorem resiexg 4988
Description: The existence of a restricted identity function, proved without using the Axiom of Replacement. (Contributed by NM, 13-Jan-2007.)
Assertion
Ref Expression
resiexg  |-  ( A  e.  V  ->  (  _I  |`  A )  e. 
_V )

Proof of Theorem resiexg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relres 4971 . . 3  |-  Rel  (  _I  |`  A )
2 simpr 110 . . . . 5  |-  ( ( x  =  y  /\  x  e.  A )  ->  x  e.  A )
3 eleq1 2256 . . . . . 6  |-  ( x  =  y  ->  (
x  e.  A  <->  y  e.  A ) )
43biimpa 296 . . . . 5  |-  ( ( x  =  y  /\  x  e.  A )  ->  y  e.  A )
52, 4jca 306 . . . 4  |-  ( ( x  =  y  /\  x  e.  A )  ->  ( x  e.  A  /\  y  e.  A
) )
6 vex 2763 . . . . . 6  |-  y  e. 
_V
76opelres 4948 . . . . 5  |-  ( <.
x ,  y >.  e.  (  _I  |`  A )  <-> 
( <. x ,  y
>.  e.  _I  /\  x  e.  A ) )
8 df-br 4031 . . . . . . 7  |-  ( x  _I  y  <->  <. x ,  y >.  e.  _I  )
96ideq 4815 . . . . . . 7  |-  ( x  _I  y  <->  x  =  y )
108, 9bitr3i 186 . . . . . 6  |-  ( <.
x ,  y >.  e.  _I  <->  x  =  y
)
1110anbi1i 458 . . . . 5  |-  ( (
<. x ,  y >.  e.  _I  /\  x  e.  A )  <->  ( x  =  y  /\  x  e.  A ) )
127, 11bitri 184 . . . 4  |-  ( <.
x ,  y >.  e.  (  _I  |`  A )  <-> 
( x  =  y  /\  x  e.  A
) )
13 opelxp 4690 . . . 4  |-  ( <.
x ,  y >.  e.  ( A  X.  A
)  <->  ( x  e.  A  /\  y  e.  A ) )
145, 12, 133imtr4i 201 . . 3  |-  ( <.
x ,  y >.  e.  (  _I  |`  A )  ->  <. x ,  y
>.  e.  ( A  X.  A ) )
151, 14relssi 4751 . 2  |-  (  _I  |`  A )  C_  ( A  X.  A )
16 xpexg 4774 . . 3  |-  ( ( A  e.  V  /\  A  e.  V )  ->  ( A  X.  A
)  e.  _V )
1716anidms 397 . 2  |-  ( A  e.  V  ->  ( A  X.  A )  e. 
_V )
18 ssexg 4169 . 2  |-  ( ( (  _I  |`  A ) 
C_  ( A  X.  A )  /\  ( A  X.  A )  e. 
_V )  ->  (  _I  |`  A )  e. 
_V )
1915, 17, 18sylancr 414 1  |-  ( A  e.  V  ->  (  _I  |`  A )  e. 
_V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2164   _Vcvv 2760    C_ wss 3154   <.cop 3622   class class class wbr 4030    _I cid 4320    X. cxp 4658    |` cres 4662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-id 4325  df-xp 4666  df-rel 4667  df-res 4672
This theorem is referenced by:  ordiso  7097  omct  7178  ctssexmid  7211  ssomct  12605  ndxarg  12644  subctctexmid  15561
  Copyright terms: Public domain W3C validator