![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > relssi | GIF version |
Description: Inference from subclass principle for relations. (Contributed by NM, 31-Mar-1998.) |
Ref | Expression |
---|---|
relssi.1 | ⊢ Rel 𝐴 |
relssi.2 | ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵) |
Ref | Expression |
---|---|
relssi | ⊢ 𝐴 ⊆ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relssi.1 | . . 3 ⊢ Rel 𝐴 | |
2 | ssrel 4748 | . . 3 ⊢ (Rel 𝐴 → (𝐴 ⊆ 𝐵 ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵))) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵)) |
4 | relssi.2 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵) | |
5 | 4 | ax-gen 1460 | . 2 ⊢ ∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵) |
6 | 3, 5 | mpgbir 1464 | 1 ⊢ 𝐴 ⊆ 𝐵 |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∀wal 1362 ∈ wcel 2164 ⊆ wss 3154 〈cop 3622 Rel wrel 4665 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-opab 4092 df-xp 4666 df-rel 4667 |
This theorem is referenced by: resiexg 4988 dftpos4 6318 enssdom 6818 idssen 6833 txuni2 14435 |
Copyright terms: Public domain | W3C validator |