Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > renemnfd | GIF version |
Description: No real equals minus infinity. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
rexrd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
Ref | Expression |
---|---|
renemnfd | ⊢ (𝜑 → 𝐴 ≠ -∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexrd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | renemnf 7968 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ -∞) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝐴 ≠ -∞) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2141 ≠ wne 2340 ℝcr 7773 -∞cmnf 7952 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-uni 3797 df-pnf 7956 df-mnf 7957 |
This theorem is referenced by: xnn0nemnf 9209 xaddnemnf 9814 xposdif 9839 xleaddadd 9844 xrbdtri 11239 |
Copyright terms: Public domain | W3C validator |