ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  renemnfd GIF version

Theorem renemnfd 7971
Description: No real equals minus infinity. (Contributed by Mario Carneiro, 28-May-2016.)
Hypothesis
Ref Expression
rexrd.1 (𝜑𝐴 ∈ ℝ)
Assertion
Ref Expression
renemnfd (𝜑𝐴 ≠ -∞)

Proof of Theorem renemnfd
StepHypRef Expression
1 rexrd.1 . 2 (𝜑𝐴 ∈ ℝ)
2 renemnf 7968 . 2 (𝐴 ∈ ℝ → 𝐴 ≠ -∞)
31, 2syl 14 1 (𝜑𝐴 ≠ -∞)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2141  wne 2340  cr 7773  -∞cmnf 7952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152  ax-setind 4521  ax-cnex 7865  ax-resscn 7866
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-uni 3797  df-pnf 7956  df-mnf 7957
This theorem is referenced by:  xnn0nemnf  9209  xaddnemnf  9814  xposdif  9839  xleaddadd  9844  xrbdtri  11239
  Copyright terms: Public domain W3C validator