Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > tfr0 | Unicode version |
Description: Transfinite recursion at the empty set. (Contributed by Jim Kingdon, 8-May-2020.) |
Ref | Expression |
---|---|
tfr.1 | recs |
Ref | Expression |
---|---|
tfr0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tfr.1 | . . . 4 recs | |
2 | 1 | tfr0dm 6259 | . . 3 |
3 | 1 | tfr2a 6258 | . . 3 |
4 | 2, 3 | syl 14 | . 2 |
5 | res0 4863 | . . 3 | |
6 | 5 | fveq2i 5464 | . 2 |
7 | 4, 6 | eqtrdi 2203 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1332 wcel 2125 c0 3390 cdm 4579 cres 4581 cfv 5163 recscrecs 6241 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-13 2127 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-nul 4086 ax-pow 4130 ax-pr 4164 ax-un 4388 ax-setind 4490 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-fal 1338 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ral 2437 df-rex 2438 df-rab 2441 df-v 2711 df-sbc 2934 df-csb 3028 df-dif 3100 df-un 3102 df-in 3104 df-ss 3111 df-nul 3391 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-iun 3847 df-br 3962 df-opab 4022 df-mpt 4023 df-tr 4059 df-id 4248 df-iord 4321 df-on 4323 df-suc 4326 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-res 4591 df-iota 5128 df-fun 5165 df-fn 5166 df-fv 5171 df-recs 6242 |
This theorem is referenced by: rdg0 6324 frec0g 6334 |
Copyright terms: Public domain | W3C validator |