ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfr0 Unicode version

Theorem tfr0 6432
Description: Transfinite recursion at the empty set. (Contributed by Jim Kingdon, 8-May-2020.)
Hypothesis
Ref Expression
tfr.1  |-  F  = recs ( G )
Assertion
Ref Expression
tfr0  |-  ( ( G `  (/) )  e.  V  ->  ( F `  (/) )  =  ( G `  (/) ) )

Proof of Theorem tfr0
StepHypRef Expression
1 tfr.1 . . . 4  |-  F  = recs ( G )
21tfr0dm 6431 . . 3  |-  ( ( G `  (/) )  e.  V  ->  (/)  e.  dom  F )
31tfr2a 6430 . . 3  |-  ( (/)  e.  dom  F  ->  ( F `  (/) )  =  ( G `  ( F  |`  (/) ) ) )
42, 3syl 14 . 2  |-  ( ( G `  (/) )  e.  V  ->  ( F `  (/) )  =  ( G `  ( F  |`  (/) ) ) )
5 res0 4982 . . 3  |-  ( F  |`  (/) )  =  (/)
65fveq2i 5602 . 2  |-  ( G `
 ( F  |`  (/) ) )  =  ( G `  (/) )
74, 6eqtrdi 2256 1  |-  ( ( G `  (/) )  e.  V  ->  ( F `  (/) )  =  ( G `  (/) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2178   (/)c0 3468   dom cdm 4693    |` cres 4695   ` cfv 5290  recscrecs 6413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-suc 4436  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-res 4705  df-iota 5251  df-fun 5292  df-fn 5293  df-fv 5298  df-recs 6414
This theorem is referenced by:  rdg0  6496  frec0g  6506
  Copyright terms: Public domain W3C validator