ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfr0 Unicode version

Theorem tfr0 6291
Description: Transfinite recursion at the empty set. (Contributed by Jim Kingdon, 8-May-2020.)
Hypothesis
Ref Expression
tfr.1  |-  F  = recs ( G )
Assertion
Ref Expression
tfr0  |-  ( ( G `  (/) )  e.  V  ->  ( F `  (/) )  =  ( G `  (/) ) )

Proof of Theorem tfr0
StepHypRef Expression
1 tfr.1 . . . 4  |-  F  = recs ( G )
21tfr0dm 6290 . . 3  |-  ( ( G `  (/) )  e.  V  ->  (/)  e.  dom  F )
31tfr2a 6289 . . 3  |-  ( (/)  e.  dom  F  ->  ( F `  (/) )  =  ( G `  ( F  |`  (/) ) ) )
42, 3syl 14 . 2  |-  ( ( G `  (/) )  e.  V  ->  ( F `  (/) )  =  ( G `  ( F  |`  (/) ) ) )
5 res0 4888 . . 3  |-  ( F  |`  (/) )  =  (/)
65fveq2i 5489 . 2  |-  ( G `
 ( F  |`  (/) ) )  =  ( G `  (/) )
74, 6eqtrdi 2215 1  |-  ( ( G `  (/) )  e.  V  ->  ( F `  (/) )  =  ( G `  (/) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    e. wcel 2136   (/)c0 3409   dom cdm 4604    |` cres 4606   ` cfv 5188  recscrecs 6272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-res 4616  df-iota 5153  df-fun 5190  df-fn 5191  df-fv 5196  df-recs 6273
This theorem is referenced by:  rdg0  6355  frec0g  6365
  Copyright terms: Public domain W3C validator