ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfr0 Unicode version

Theorem tfr0 6302
Description: Transfinite recursion at the empty set. (Contributed by Jim Kingdon, 8-May-2020.)
Hypothesis
Ref Expression
tfr.1  |-  F  = recs ( G )
Assertion
Ref Expression
tfr0  |-  ( ( G `  (/) )  e.  V  ->  ( F `  (/) )  =  ( G `  (/) ) )

Proof of Theorem tfr0
StepHypRef Expression
1 tfr.1 . . . 4  |-  F  = recs ( G )
21tfr0dm 6301 . . 3  |-  ( ( G `  (/) )  e.  V  ->  (/)  e.  dom  F )
31tfr2a 6300 . . 3  |-  ( (/)  e.  dom  F  ->  ( F `  (/) )  =  ( G `  ( F  |`  (/) ) ) )
42, 3syl 14 . 2  |-  ( ( G `  (/) )  e.  V  ->  ( F `  (/) )  =  ( G `  ( F  |`  (/) ) ) )
5 res0 4895 . . 3  |-  ( F  |`  (/) )  =  (/)
65fveq2i 5499 . 2  |-  ( G `
 ( F  |`  (/) ) )  =  ( G `  (/) )
74, 6eqtrdi 2219 1  |-  ( ( G `  (/) )  e.  V  ->  ( F `  (/) )  =  ( G `  (/) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348    e. wcel 2141   (/)c0 3414   dom cdm 4611    |` cres 4613   ` cfv 5198  recscrecs 6283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-res 4623  df-iota 5160  df-fun 5200  df-fn 5201  df-fv 5206  df-recs 6284
This theorem is referenced by:  rdg0  6366  frec0g  6376
  Copyright terms: Public domain W3C validator