ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resmptf GIF version

Theorem resmptf 4996
Description: Restriction of the mapping operation. (Contributed by Thierry Arnoux, 28-Mar-2017.)
Hypotheses
Ref Expression
resmptf.a 𝑥𝐴
resmptf.b 𝑥𝐵
Assertion
Ref Expression
resmptf (𝐵𝐴 → ((𝑥𝐴𝐶) ↾ 𝐵) = (𝑥𝐵𝐶))

Proof of Theorem resmptf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 resmpt 4994 . 2 (𝐵𝐴 → ((𝑦𝐴𝑦 / 𝑥𝐶) ↾ 𝐵) = (𝑦𝐵𝑦 / 𝑥𝐶))
2 resmptf.a . . . 4 𝑥𝐴
3 nfcv 2339 . . . 4 𝑦𝐴
4 nfcv 2339 . . . 4 𝑦𝐶
5 nfcsb1v 3117 . . . 4 𝑥𝑦 / 𝑥𝐶
6 csbeq1a 3093 . . . 4 (𝑥 = 𝑦𝐶 = 𝑦 / 𝑥𝐶)
72, 3, 4, 5, 6cbvmptf 4127 . . 3 (𝑥𝐴𝐶) = (𝑦𝐴𝑦 / 𝑥𝐶)
87reseq1i 4942 . 2 ((𝑥𝐴𝐶) ↾ 𝐵) = ((𝑦𝐴𝑦 / 𝑥𝐶) ↾ 𝐵)
9 resmptf.b . . 3 𝑥𝐵
10 nfcv 2339 . . 3 𝑦𝐵
119, 10, 4, 5, 6cbvmptf 4127 . 2 (𝑥𝐵𝐶) = (𝑦𝐵𝑦 / 𝑥𝐶)
121, 8, 113eqtr4g 2254 1 (𝐵𝐴 → ((𝑥𝐴𝐶) ↾ 𝐵) = (𝑥𝐵𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wnfc 2326  csb 3084  wss 3157  cmpt 4094  cres 4665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-opab 4095  df-mpt 4096  df-xp 4669  df-rel 4670  df-res 4675
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator