ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resmptf GIF version

Theorem resmptf 4992
Description: Restriction of the mapping operation. (Contributed by Thierry Arnoux, 28-Mar-2017.)
Hypotheses
Ref Expression
resmptf.a 𝑥𝐴
resmptf.b 𝑥𝐵
Assertion
Ref Expression
resmptf (𝐵𝐴 → ((𝑥𝐴𝐶) ↾ 𝐵) = (𝑥𝐵𝐶))

Proof of Theorem resmptf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 resmpt 4990 . 2 (𝐵𝐴 → ((𝑦𝐴𝑦 / 𝑥𝐶) ↾ 𝐵) = (𝑦𝐵𝑦 / 𝑥𝐶))
2 resmptf.a . . . 4 𝑥𝐴
3 nfcv 2336 . . . 4 𝑦𝐴
4 nfcv 2336 . . . 4 𝑦𝐶
5 nfcsb1v 3113 . . . 4 𝑥𝑦 / 𝑥𝐶
6 csbeq1a 3089 . . . 4 (𝑥 = 𝑦𝐶 = 𝑦 / 𝑥𝐶)
72, 3, 4, 5, 6cbvmptf 4123 . . 3 (𝑥𝐴𝐶) = (𝑦𝐴𝑦 / 𝑥𝐶)
87reseq1i 4938 . 2 ((𝑥𝐴𝐶) ↾ 𝐵) = ((𝑦𝐴𝑦 / 𝑥𝐶) ↾ 𝐵)
9 resmptf.b . . 3 𝑥𝐵
10 nfcv 2336 . . 3 𝑦𝐵
119, 10, 4, 5, 6cbvmptf 4123 . 2 (𝑥𝐵𝐶) = (𝑦𝐵𝑦 / 𝑥𝐶)
121, 8, 113eqtr4g 2251 1 (𝐵𝐴 → ((𝑥𝐴𝐶) ↾ 𝐵) = (𝑥𝐵𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wnfc 2323  csb 3080  wss 3153  cmpt 4090  cres 4661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-opab 4091  df-mpt 4092  df-xp 4665  df-rel 4666  df-res 4671
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator