Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > resmptf | GIF version |
Description: Restriction of the mapping operation. (Contributed by Thierry Arnoux, 28-Mar-2017.) |
Ref | Expression |
---|---|
resmptf.a | ⊢ Ⅎ𝑥𝐴 |
resmptf.b | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
resmptf | ⊢ (𝐵 ⊆ 𝐴 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐵) = (𝑥 ∈ 𝐵 ↦ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resmpt 4939 | . 2 ⊢ (𝐵 ⊆ 𝐴 → ((𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐶) ↾ 𝐵) = (𝑦 ∈ 𝐵 ↦ ⦋𝑦 / 𝑥⦌𝐶)) | |
2 | resmptf.a | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | nfcv 2312 | . . . 4 ⊢ Ⅎ𝑦𝐴 | |
4 | nfcv 2312 | . . . 4 ⊢ Ⅎ𝑦𝐶 | |
5 | nfcsb1v 3082 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐶 | |
6 | csbeq1a 3058 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐶 = ⦋𝑦 / 𝑥⦌𝐶) | |
7 | 2, 3, 4, 5, 6 | cbvmptf 4083 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐶) |
8 | 7 | reseq1i 4887 | . 2 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐵) = ((𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐶) ↾ 𝐵) |
9 | resmptf.b | . . 3 ⊢ Ⅎ𝑥𝐵 | |
10 | nfcv 2312 | . . 3 ⊢ Ⅎ𝑦𝐵 | |
11 | 9, 10, 4, 5, 6 | cbvmptf 4083 | . 2 ⊢ (𝑥 ∈ 𝐵 ↦ 𝐶) = (𝑦 ∈ 𝐵 ↦ ⦋𝑦 / 𝑥⦌𝐶) |
12 | 1, 8, 11 | 3eqtr4g 2228 | 1 ⊢ (𝐵 ⊆ 𝐴 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐵) = (𝑥 ∈ 𝐵 ↦ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 Ⅎwnfc 2299 ⦋csb 3049 ⊆ wss 3121 ↦ cmpt 4050 ↾ cres 4613 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-csb 3050 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-opab 4051 df-mpt 4052 df-xp 4617 df-rel 4618 df-res 4623 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |