| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > resmptf | GIF version | ||
| Description: Restriction of the mapping operation. (Contributed by Thierry Arnoux, 28-Mar-2017.) |
| Ref | Expression |
|---|---|
| resmptf.a | ⊢ Ⅎ𝑥𝐴 |
| resmptf.b | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| resmptf | ⊢ (𝐵 ⊆ 𝐴 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐵) = (𝑥 ∈ 𝐵 ↦ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resmpt 4995 | . 2 ⊢ (𝐵 ⊆ 𝐴 → ((𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐶) ↾ 𝐵) = (𝑦 ∈ 𝐵 ↦ ⦋𝑦 / 𝑥⦌𝐶)) | |
| 2 | resmptf.a | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 3 | nfcv 2339 | . . . 4 ⊢ Ⅎ𝑦𝐴 | |
| 4 | nfcv 2339 | . . . 4 ⊢ Ⅎ𝑦𝐶 | |
| 5 | nfcsb1v 3117 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐶 | |
| 6 | csbeq1a 3093 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐶 = ⦋𝑦 / 𝑥⦌𝐶) | |
| 7 | 2, 3, 4, 5, 6 | cbvmptf 4128 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐶) |
| 8 | 7 | reseq1i 4943 | . 2 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐵) = ((𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐶) ↾ 𝐵) |
| 9 | resmptf.b | . . 3 ⊢ Ⅎ𝑥𝐵 | |
| 10 | nfcv 2339 | . . 3 ⊢ Ⅎ𝑦𝐵 | |
| 11 | 9, 10, 4, 5, 6 | cbvmptf 4128 | . 2 ⊢ (𝑥 ∈ 𝐵 ↦ 𝐶) = (𝑦 ∈ 𝐵 ↦ ⦋𝑦 / 𝑥⦌𝐶) |
| 12 | 1, 8, 11 | 3eqtr4g 2254 | 1 ⊢ (𝐵 ⊆ 𝐴 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐵) = (𝑥 ∈ 𝐵 ↦ 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 Ⅎwnfc 2326 ⦋csb 3084 ⊆ wss 3157 ↦ cmpt 4095 ↾ cres 4666 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-opab 4096 df-mpt 4097 df-xp 4670 df-rel 4671 df-res 4676 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |