![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > resmptf | GIF version |
Description: Restriction of the mapping operation. (Contributed by Thierry Arnoux, 28-Mar-2017.) |
Ref | Expression |
---|---|
resmptf.a | ⊢ Ⅎ𝑥𝐴 |
resmptf.b | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
resmptf | ⊢ (𝐵 ⊆ 𝐴 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐵) = (𝑥 ∈ 𝐵 ↦ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resmpt 4990 | . 2 ⊢ (𝐵 ⊆ 𝐴 → ((𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐶) ↾ 𝐵) = (𝑦 ∈ 𝐵 ↦ ⦋𝑦 / 𝑥⦌𝐶)) | |
2 | resmptf.a | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | nfcv 2336 | . . . 4 ⊢ Ⅎ𝑦𝐴 | |
4 | nfcv 2336 | . . . 4 ⊢ Ⅎ𝑦𝐶 | |
5 | nfcsb1v 3113 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐶 | |
6 | csbeq1a 3089 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐶 = ⦋𝑦 / 𝑥⦌𝐶) | |
7 | 2, 3, 4, 5, 6 | cbvmptf 4123 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐶) |
8 | 7 | reseq1i 4938 | . 2 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐵) = ((𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐶) ↾ 𝐵) |
9 | resmptf.b | . . 3 ⊢ Ⅎ𝑥𝐵 | |
10 | nfcv 2336 | . . 3 ⊢ Ⅎ𝑦𝐵 | |
11 | 9, 10, 4, 5, 6 | cbvmptf 4123 | . 2 ⊢ (𝑥 ∈ 𝐵 ↦ 𝐶) = (𝑦 ∈ 𝐵 ↦ ⦋𝑦 / 𝑥⦌𝐶) |
12 | 1, 8, 11 | 3eqtr4g 2251 | 1 ⊢ (𝐵 ⊆ 𝐴 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐵) = (𝑥 ∈ 𝐵 ↦ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 Ⅎwnfc 2323 ⦋csb 3080 ⊆ wss 3153 ↦ cmpt 4090 ↾ cres 4661 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2986 df-csb 3081 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-opab 4091 df-mpt 4092 df-xp 4665 df-rel 4666 df-res 4671 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |