| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > resmptf | GIF version | ||
| Description: Restriction of the mapping operation. (Contributed by Thierry Arnoux, 28-Mar-2017.) |
| Ref | Expression |
|---|---|
| resmptf.a | ⊢ Ⅎ𝑥𝐴 |
| resmptf.b | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| resmptf | ⊢ (𝐵 ⊆ 𝐴 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐵) = (𝑥 ∈ 𝐵 ↦ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resmpt 5012 | . 2 ⊢ (𝐵 ⊆ 𝐴 → ((𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐶) ↾ 𝐵) = (𝑦 ∈ 𝐵 ↦ ⦋𝑦 / 𝑥⦌𝐶)) | |
| 2 | resmptf.a | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 3 | nfcv 2349 | . . . 4 ⊢ Ⅎ𝑦𝐴 | |
| 4 | nfcv 2349 | . . . 4 ⊢ Ⅎ𝑦𝐶 | |
| 5 | nfcsb1v 3127 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐶 | |
| 6 | csbeq1a 3103 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐶 = ⦋𝑦 / 𝑥⦌𝐶) | |
| 7 | 2, 3, 4, 5, 6 | cbvmptf 4142 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐶) |
| 8 | 7 | reseq1i 4960 | . 2 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐵) = ((𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐶) ↾ 𝐵) |
| 9 | resmptf.b | . . 3 ⊢ Ⅎ𝑥𝐵 | |
| 10 | nfcv 2349 | . . 3 ⊢ Ⅎ𝑦𝐵 | |
| 11 | 9, 10, 4, 5, 6 | cbvmptf 4142 | . 2 ⊢ (𝑥 ∈ 𝐵 ↦ 𝐶) = (𝑦 ∈ 𝐵 ↦ ⦋𝑦 / 𝑥⦌𝐶) |
| 12 | 1, 8, 11 | 3eqtr4g 2264 | 1 ⊢ (𝐵 ⊆ 𝐴 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐵) = (𝑥 ∈ 𝐵 ↦ 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 Ⅎwnfc 2336 ⦋csb 3094 ⊆ wss 3167 ↦ cmpt 4109 ↾ cres 4681 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3000 df-csb 3095 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-opab 4110 df-mpt 4111 df-xp 4685 df-rel 4686 df-res 4691 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |