| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > resundi | GIF version | ||
| Description: Distributive law for restriction over union. Theorem 31 of [Suppes] p. 65. (Contributed by NM, 30-Sep-2002.) |
| Ref | Expression |
|---|---|
| resundi | ⊢ (𝐴 ↾ (𝐵 ∪ 𝐶)) = ((𝐴 ↾ 𝐵) ∪ (𝐴 ↾ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpundir 4750 | . . . 4 ⊢ ((𝐵 ∪ 𝐶) × V) = ((𝐵 × V) ∪ (𝐶 × V)) | |
| 2 | 1 | ineq2i 3379 | . . 3 ⊢ (𝐴 ∩ ((𝐵 ∪ 𝐶) × V)) = (𝐴 ∩ ((𝐵 × V) ∪ (𝐶 × V))) |
| 3 | indi 3428 | . . 3 ⊢ (𝐴 ∩ ((𝐵 × V) ∪ (𝐶 × V))) = ((𝐴 ∩ (𝐵 × V)) ∪ (𝐴 ∩ (𝐶 × V))) | |
| 4 | 2, 3 | eqtri 2228 | . 2 ⊢ (𝐴 ∩ ((𝐵 ∪ 𝐶) × V)) = ((𝐴 ∩ (𝐵 × V)) ∪ (𝐴 ∩ (𝐶 × V))) |
| 5 | df-res 4705 | . 2 ⊢ (𝐴 ↾ (𝐵 ∪ 𝐶)) = (𝐴 ∩ ((𝐵 ∪ 𝐶) × V)) | |
| 6 | df-res 4705 | . . 3 ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) | |
| 7 | df-res 4705 | . . 3 ⊢ (𝐴 ↾ 𝐶) = (𝐴 ∩ (𝐶 × V)) | |
| 8 | 6, 7 | uneq12i 3333 | . 2 ⊢ ((𝐴 ↾ 𝐵) ∪ (𝐴 ↾ 𝐶)) = ((𝐴 ∩ (𝐵 × V)) ∪ (𝐴 ∩ (𝐶 × V))) |
| 9 | 4, 5, 8 | 3eqtr4i 2238 | 1 ⊢ (𝐴 ↾ (𝐵 ∪ 𝐶)) = ((𝐴 ↾ 𝐵) ∪ (𝐴 ↾ 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 Vcvv 2776 ∪ cun 3172 ∩ cin 3173 × cxp 4691 ↾ cres 4695 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 df-in 3180 df-opab 4122 df-xp 4699 df-res 4705 |
| This theorem is referenced by: imaundi 5114 relresfld 5231 relcoi1 5233 resasplitss 5477 fnsnsplitss 5806 fnsnsplitdc 6614 fnfi 7064 fseq1p1m1 10251 resunimafz0 11013 |
| Copyright terms: Public domain | W3C validator |