ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocexprlemml Unicode version

Theorem suplocexprlemml 7783
Description: Lemma for suplocexpr 7792. The lower cut of the putative supremum is inhabited. (Contributed by Jim Kingdon, 7-Jan-2024.)
Hypotheses
Ref Expression
suplocexpr.m  |-  ( ph  ->  E. x  x  e.  A )
suplocexpr.ub  |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
<P  x )
suplocexpr.loc  |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  (
x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )
Assertion
Ref Expression
suplocexprlemml  |-  ( ph  ->  E. s  e.  Q.  s  e.  U. ( 1st " A ) )
Distinct variable groups:    A, s, x, y    ph, s, x, y
Allowed substitution hints:    ph( z)    A( z)

Proof of Theorem suplocexprlemml
StepHypRef Expression
1 suplocexpr.m . . 3  |-  ( ph  ->  E. x  x  e.  A )
2 suplocexpr.ub . . . . . . 7  |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
<P  x )
3 suplocexpr.loc . . . . . . 7  |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  (
x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )
41, 2, 3suplocexprlemss 7782 . . . . . 6  |-  ( ph  ->  A  C_  P. )
54sselda 3183 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  P. )
6 prop 7542 . . . . 5  |-  ( x  e.  P.  ->  <. ( 1st `  x ) ,  ( 2nd `  x
) >.  e.  P. )
7 prml 7544 . . . . 5  |-  ( <.
( 1st `  x
) ,  ( 2nd `  x ) >.  e.  P.  ->  E. s  e.  Q.  s  e.  ( 1st `  x ) )
85, 6, 73syl 17 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  E. s  e.  Q.  s  e.  ( 1st `  x ) )
98ralrimiva 2570 . . 3  |-  ( ph  ->  A. x  e.  A  E. s  e.  Q.  s  e.  ( 1st `  x ) )
10 r19.2m 3537 . . 3  |-  ( ( E. x  x  e.  A  /\  A. x  e.  A  E. s  e.  Q.  s  e.  ( 1st `  x ) )  ->  E. x  e.  A  E. s  e.  Q.  s  e.  ( 1st `  x ) )
111, 9, 10syl2anc 411 . 2  |-  ( ph  ->  E. x  e.  A  E. s  e.  Q.  s  e.  ( 1st `  x ) )
12 suplocexprlemell 7780 . . . 4  |-  ( s  e.  U. ( 1st " A )  <->  E. x  e.  A  s  e.  ( 1st `  x ) )
1312rexbii 2504 . . 3  |-  ( E. s  e.  Q.  s  e.  U. ( 1st " A
)  <->  E. s  e.  Q.  E. x  e.  A  s  e.  ( 1st `  x
) )
14 rexcom 2661 . . 3  |-  ( E. s  e.  Q.  E. x  e.  A  s  e.  ( 1st `  x
)  <->  E. x  e.  A  E. s  e.  Q.  s  e.  ( 1st `  x ) )
1513, 14bitri 184 . 2  |-  ( E. s  e.  Q.  s  e.  U. ( 1st " A
)  <->  E. x  e.  A  E. s  e.  Q.  s  e.  ( 1st `  x ) )
1611, 15sylibr 134 1  |-  ( ph  ->  E. s  e.  Q.  s  e.  U. ( 1st " A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709   E.wex 1506    e. wcel 2167   A.wral 2475   E.wrex 2476   <.cop 3625   U.cuni 3839   class class class wbr 4033   "cima 4666   ` cfv 5258   1stc1st 6196   2ndc2nd 6197   Q.cnq 7347   P.cnp 7358    <P cltp 7362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-1st 6198  df-2nd 6199  df-qs 6598  df-ni 7371  df-nqqs 7415  df-inp 7533  df-iltp 7537
This theorem is referenced by:  suplocexprlemex  7789
  Copyright terms: Public domain W3C validator