ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocexprlemml Unicode version

Theorem suplocexprlemml 7717
Description: Lemma for suplocexpr 7726. The lower cut of the putative supremum is inhabited. (Contributed by Jim Kingdon, 7-Jan-2024.)
Hypotheses
Ref Expression
suplocexpr.m  |-  ( ph  ->  E. x  x  e.  A )
suplocexpr.ub  |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
<P  x )
suplocexpr.loc  |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  (
x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )
Assertion
Ref Expression
suplocexprlemml  |-  ( ph  ->  E. s  e.  Q.  s  e.  U. ( 1st " A ) )
Distinct variable groups:    A, s, x, y    ph, s, x, y
Allowed substitution hints:    ph( z)    A( z)

Proof of Theorem suplocexprlemml
StepHypRef Expression
1 suplocexpr.m . . 3  |-  ( ph  ->  E. x  x  e.  A )
2 suplocexpr.ub . . . . . . 7  |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
<P  x )
3 suplocexpr.loc . . . . . . 7  |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  (
x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )
41, 2, 3suplocexprlemss 7716 . . . . . 6  |-  ( ph  ->  A  C_  P. )
54sselda 3157 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  P. )
6 prop 7476 . . . . 5  |-  ( x  e.  P.  ->  <. ( 1st `  x ) ,  ( 2nd `  x
) >.  e.  P. )
7 prml 7478 . . . . 5  |-  ( <.
( 1st `  x
) ,  ( 2nd `  x ) >.  e.  P.  ->  E. s  e.  Q.  s  e.  ( 1st `  x ) )
85, 6, 73syl 17 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  E. s  e.  Q.  s  e.  ( 1st `  x ) )
98ralrimiva 2550 . . 3  |-  ( ph  ->  A. x  e.  A  E. s  e.  Q.  s  e.  ( 1st `  x ) )
10 r19.2m 3511 . . 3  |-  ( ( E. x  x  e.  A  /\  A. x  e.  A  E. s  e.  Q.  s  e.  ( 1st `  x ) )  ->  E. x  e.  A  E. s  e.  Q.  s  e.  ( 1st `  x ) )
111, 9, 10syl2anc 411 . 2  |-  ( ph  ->  E. x  e.  A  E. s  e.  Q.  s  e.  ( 1st `  x ) )
12 suplocexprlemell 7714 . . . 4  |-  ( s  e.  U. ( 1st " A )  <->  E. x  e.  A  s  e.  ( 1st `  x ) )
1312rexbii 2484 . . 3  |-  ( E. s  e.  Q.  s  e.  U. ( 1st " A
)  <->  E. s  e.  Q.  E. x  e.  A  s  e.  ( 1st `  x
) )
14 rexcom 2641 . . 3  |-  ( E. s  e.  Q.  E. x  e.  A  s  e.  ( 1st `  x
)  <->  E. x  e.  A  E. s  e.  Q.  s  e.  ( 1st `  x ) )
1513, 14bitri 184 . 2  |-  ( E. s  e.  Q.  s  e.  U. ( 1st " A
)  <->  E. x  e.  A  E. s  e.  Q.  s  e.  ( 1st `  x ) )
1611, 15sylibr 134 1  |-  ( ph  ->  E. s  e.  Q.  s  e.  U. ( 1st " A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 708   E.wex 1492    e. wcel 2148   A.wral 2455   E.wrex 2456   <.cop 3597   U.cuni 3811   class class class wbr 4005   "cima 4631   ` cfv 5218   1stc1st 6141   2ndc2nd 6142   Q.cnq 7281   P.cnp 7292    <P cltp 7296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-1st 6143  df-2nd 6144  df-qs 6543  df-ni 7305  df-nqqs 7349  df-inp 7467  df-iltp 7471
This theorem is referenced by:  suplocexprlemex  7723
  Copyright terms: Public domain W3C validator