ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocexprlemml Unicode version

Theorem suplocexprlemml 7776
Description: Lemma for suplocexpr 7785. The lower cut of the putative supremum is inhabited. (Contributed by Jim Kingdon, 7-Jan-2024.)
Hypotheses
Ref Expression
suplocexpr.m  |-  ( ph  ->  E. x  x  e.  A )
suplocexpr.ub  |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
<P  x )
suplocexpr.loc  |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  (
x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )
Assertion
Ref Expression
suplocexprlemml  |-  ( ph  ->  E. s  e.  Q.  s  e.  U. ( 1st " A ) )
Distinct variable groups:    A, s, x, y    ph, s, x, y
Allowed substitution hints:    ph( z)    A( z)

Proof of Theorem suplocexprlemml
StepHypRef Expression
1 suplocexpr.m . . 3  |-  ( ph  ->  E. x  x  e.  A )
2 suplocexpr.ub . . . . . . 7  |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
<P  x )
3 suplocexpr.loc . . . . . . 7  |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  (
x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )
41, 2, 3suplocexprlemss 7775 . . . . . 6  |-  ( ph  ->  A  C_  P. )
54sselda 3179 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  P. )
6 prop 7535 . . . . 5  |-  ( x  e.  P.  ->  <. ( 1st `  x ) ,  ( 2nd `  x
) >.  e.  P. )
7 prml 7537 . . . . 5  |-  ( <.
( 1st `  x
) ,  ( 2nd `  x ) >.  e.  P.  ->  E. s  e.  Q.  s  e.  ( 1st `  x ) )
85, 6, 73syl 17 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  E. s  e.  Q.  s  e.  ( 1st `  x ) )
98ralrimiva 2567 . . 3  |-  ( ph  ->  A. x  e.  A  E. s  e.  Q.  s  e.  ( 1st `  x ) )
10 r19.2m 3533 . . 3  |-  ( ( E. x  x  e.  A  /\  A. x  e.  A  E. s  e.  Q.  s  e.  ( 1st `  x ) )  ->  E. x  e.  A  E. s  e.  Q.  s  e.  ( 1st `  x ) )
111, 9, 10syl2anc 411 . 2  |-  ( ph  ->  E. x  e.  A  E. s  e.  Q.  s  e.  ( 1st `  x ) )
12 suplocexprlemell 7773 . . . 4  |-  ( s  e.  U. ( 1st " A )  <->  E. x  e.  A  s  e.  ( 1st `  x ) )
1312rexbii 2501 . . 3  |-  ( E. s  e.  Q.  s  e.  U. ( 1st " A
)  <->  E. s  e.  Q.  E. x  e.  A  s  e.  ( 1st `  x
) )
14 rexcom 2658 . . 3  |-  ( E. s  e.  Q.  E. x  e.  A  s  e.  ( 1st `  x
)  <->  E. x  e.  A  E. s  e.  Q.  s  e.  ( 1st `  x ) )
1513, 14bitri 184 . 2  |-  ( E. s  e.  Q.  s  e.  U. ( 1st " A
)  <->  E. x  e.  A  E. s  e.  Q.  s  e.  ( 1st `  x ) )
1611, 15sylibr 134 1  |-  ( ph  ->  E. s  e.  Q.  s  e.  U. ( 1st " A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709   E.wex 1503    e. wcel 2164   A.wral 2472   E.wrex 2473   <.cop 3621   U.cuni 3835   class class class wbr 4029   "cima 4662   ` cfv 5254   1stc1st 6191   2ndc2nd 6192   Q.cnq 7340   P.cnp 7351    <P cltp 7355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-1st 6193  df-2nd 6194  df-qs 6593  df-ni 7364  df-nqqs 7408  df-inp 7526  df-iltp 7530
This theorem is referenced by:  suplocexprlemex  7782
  Copyright terms: Public domain W3C validator