ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocexprlemml Unicode version

Theorem suplocexprlemml 7745
Description: Lemma for suplocexpr 7754. The lower cut of the putative supremum is inhabited. (Contributed by Jim Kingdon, 7-Jan-2024.)
Hypotheses
Ref Expression
suplocexpr.m  |-  ( ph  ->  E. x  x  e.  A )
suplocexpr.ub  |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
<P  x )
suplocexpr.loc  |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  (
x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )
Assertion
Ref Expression
suplocexprlemml  |-  ( ph  ->  E. s  e.  Q.  s  e.  U. ( 1st " A ) )
Distinct variable groups:    A, s, x, y    ph, s, x, y
Allowed substitution hints:    ph( z)    A( z)

Proof of Theorem suplocexprlemml
StepHypRef Expression
1 suplocexpr.m . . 3  |-  ( ph  ->  E. x  x  e.  A )
2 suplocexpr.ub . . . . . . 7  |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
<P  x )
3 suplocexpr.loc . . . . . . 7  |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  (
x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )
41, 2, 3suplocexprlemss 7744 . . . . . 6  |-  ( ph  ->  A  C_  P. )
54sselda 3170 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  P. )
6 prop 7504 . . . . 5  |-  ( x  e.  P.  ->  <. ( 1st `  x ) ,  ( 2nd `  x
) >.  e.  P. )
7 prml 7506 . . . . 5  |-  ( <.
( 1st `  x
) ,  ( 2nd `  x ) >.  e.  P.  ->  E. s  e.  Q.  s  e.  ( 1st `  x ) )
85, 6, 73syl 17 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  E. s  e.  Q.  s  e.  ( 1st `  x ) )
98ralrimiva 2563 . . 3  |-  ( ph  ->  A. x  e.  A  E. s  e.  Q.  s  e.  ( 1st `  x ) )
10 r19.2m 3524 . . 3  |-  ( ( E. x  x  e.  A  /\  A. x  e.  A  E. s  e.  Q.  s  e.  ( 1st `  x ) )  ->  E. x  e.  A  E. s  e.  Q.  s  e.  ( 1st `  x ) )
111, 9, 10syl2anc 411 . 2  |-  ( ph  ->  E. x  e.  A  E. s  e.  Q.  s  e.  ( 1st `  x ) )
12 suplocexprlemell 7742 . . . 4  |-  ( s  e.  U. ( 1st " A )  <->  E. x  e.  A  s  e.  ( 1st `  x ) )
1312rexbii 2497 . . 3  |-  ( E. s  e.  Q.  s  e.  U. ( 1st " A
)  <->  E. s  e.  Q.  E. x  e.  A  s  e.  ( 1st `  x
) )
14 rexcom 2654 . . 3  |-  ( E. s  e.  Q.  E. x  e.  A  s  e.  ( 1st `  x
)  <->  E. x  e.  A  E. s  e.  Q.  s  e.  ( 1st `  x ) )
1513, 14bitri 184 . 2  |-  ( E. s  e.  Q.  s  e.  U. ( 1st " A
)  <->  E. x  e.  A  E. s  e.  Q.  s  e.  ( 1st `  x ) )
1611, 15sylibr 134 1  |-  ( ph  ->  E. s  e.  Q.  s  e.  U. ( 1st " A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709   E.wex 1503    e. wcel 2160   A.wral 2468   E.wrex 2469   <.cop 3610   U.cuni 3824   class class class wbr 4018   "cima 4647   ` cfv 5235   1stc1st 6163   2ndc2nd 6164   Q.cnq 7309   P.cnp 7320    <P cltp 7324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-iinf 4605
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-1st 6165  df-2nd 6166  df-qs 6565  df-ni 7333  df-nqqs 7377  df-inp 7495  df-iltp 7499
This theorem is referenced by:  suplocexprlemex  7751
  Copyright terms: Public domain W3C validator