| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulcomprg | Unicode version | ||
| Description: Multiplication of positive reals is commutative. Proposition 9-3.7(ii) of [Gleason] p. 124. (Contributed by Jim Kingdon, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| mulcomprg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prop 7630 |
. . . . . . . . 9
| |
| 2 | elprnql 7636 |
. . . . . . . . 9
| |
| 3 | 1, 2 | sylan 283 |
. . . . . . . 8
|
| 4 | prop 7630 |
. . . . . . . . . . . . 13
| |
| 5 | elprnql 7636 |
. . . . . . . . . . . . 13
| |
| 6 | 4, 5 | sylan 283 |
. . . . . . . . . . . 12
|
| 7 | mulcomnqg 7538 |
. . . . . . . . . . . . 13
| |
| 8 | 7 | eqeq2d 2221 |
. . . . . . . . . . . 12
|
| 9 | 6, 8 | sylan2 286 |
. . . . . . . . . . 11
|
| 10 | 9 | anassrs 400 |
. . . . . . . . . 10
|
| 11 | 10 | rexbidva 2507 |
. . . . . . . . 9
|
| 12 | 11 | ancoms 268 |
. . . . . . . 8
|
| 13 | 3, 12 | sylan2 286 |
. . . . . . 7
|
| 14 | 13 | anassrs 400 |
. . . . . 6
|
| 15 | 14 | rexbidva 2507 |
. . . . 5
|
| 16 | rexcom 2675 |
. . . . 5
| |
| 17 | 15, 16 | bitrdi 196 |
. . . 4
|
| 18 | 17 | rabbidv 2768 |
. . 3
|
| 19 | elprnqu 7637 |
. . . . . . . . 9
| |
| 20 | 1, 19 | sylan 283 |
. . . . . . . 8
|
| 21 | elprnqu 7637 |
. . . . . . . . . . . . 13
| |
| 22 | 4, 21 | sylan 283 |
. . . . . . . . . . . 12
|
| 23 | 22, 8 | sylan2 286 |
. . . . . . . . . . 11
|
| 24 | 23 | anassrs 400 |
. . . . . . . . . 10
|
| 25 | 24 | rexbidva 2507 |
. . . . . . . . 9
|
| 26 | 25 | ancoms 268 |
. . . . . . . 8
|
| 27 | 20, 26 | sylan2 286 |
. . . . . . 7
|
| 28 | 27 | anassrs 400 |
. . . . . 6
|
| 29 | 28 | rexbidva 2507 |
. . . . 5
|
| 30 | rexcom 2675 |
. . . . 5
| |
| 31 | 29, 30 | bitrdi 196 |
. . . 4
|
| 32 | 31 | rabbidv 2768 |
. . 3
|
| 33 | 18, 32 | opeq12d 3844 |
. 2
|
| 34 | mpvlu 7694 |
. . 3
| |
| 35 | 34 | ancoms 268 |
. 2
|
| 36 | mpvlu 7694 |
. 2
| |
| 37 | 33, 35, 36 | 3eqtr4rd 2253 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-iinf 4657 |
| This theorem depends on definitions: df-bi 117 df-dc 839 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-tr 4162 df-id 4361 df-iord 4434 df-on 4436 df-suc 4439 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-recs 6421 df-irdg 6486 df-oadd 6536 df-omul 6537 df-er 6650 df-ec 6652 df-qs 6656 df-ni 7459 df-mi 7461 df-mpq 7500 df-enq 7502 df-nqqs 7503 df-mqqs 7505 df-inp 7621 df-imp 7624 |
| This theorem is referenced by: ltmprr 7797 mulcmpblnrlemg 7895 mulcomsrg 7912 mulasssrg 7913 m1m1sr 7916 recexgt0sr 7928 mulgt0sr 7933 mulextsr1lem 7935 recidpirqlemcalc 8012 |
| Copyright terms: Public domain | W3C validator |