| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulcomprg | Unicode version | ||
| Description: Multiplication of positive reals is commutative. Proposition 9-3.7(ii) of [Gleason] p. 124. (Contributed by Jim Kingdon, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| mulcomprg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prop 7670 |
. . . . . . . . 9
| |
| 2 | elprnql 7676 |
. . . . . . . . 9
| |
| 3 | 1, 2 | sylan 283 |
. . . . . . . 8
|
| 4 | prop 7670 |
. . . . . . . . . . . . 13
| |
| 5 | elprnql 7676 |
. . . . . . . . . . . . 13
| |
| 6 | 4, 5 | sylan 283 |
. . . . . . . . . . . 12
|
| 7 | mulcomnqg 7578 |
. . . . . . . . . . . . 13
| |
| 8 | 7 | eqeq2d 2241 |
. . . . . . . . . . . 12
|
| 9 | 6, 8 | sylan2 286 |
. . . . . . . . . . 11
|
| 10 | 9 | anassrs 400 |
. . . . . . . . . 10
|
| 11 | 10 | rexbidva 2527 |
. . . . . . . . 9
|
| 12 | 11 | ancoms 268 |
. . . . . . . 8
|
| 13 | 3, 12 | sylan2 286 |
. . . . . . 7
|
| 14 | 13 | anassrs 400 |
. . . . . 6
|
| 15 | 14 | rexbidva 2527 |
. . . . 5
|
| 16 | rexcom 2695 |
. . . . 5
| |
| 17 | 15, 16 | bitrdi 196 |
. . . 4
|
| 18 | 17 | rabbidv 2788 |
. . 3
|
| 19 | elprnqu 7677 |
. . . . . . . . 9
| |
| 20 | 1, 19 | sylan 283 |
. . . . . . . 8
|
| 21 | elprnqu 7677 |
. . . . . . . . . . . . 13
| |
| 22 | 4, 21 | sylan 283 |
. . . . . . . . . . . 12
|
| 23 | 22, 8 | sylan2 286 |
. . . . . . . . . . 11
|
| 24 | 23 | anassrs 400 |
. . . . . . . . . 10
|
| 25 | 24 | rexbidva 2527 |
. . . . . . . . 9
|
| 26 | 25 | ancoms 268 |
. . . . . . . 8
|
| 27 | 20, 26 | sylan2 286 |
. . . . . . 7
|
| 28 | 27 | anassrs 400 |
. . . . . 6
|
| 29 | 28 | rexbidva 2527 |
. . . . 5
|
| 30 | rexcom 2695 |
. . . . 5
| |
| 31 | 29, 30 | bitrdi 196 |
. . . 4
|
| 32 | 31 | rabbidv 2788 |
. . 3
|
| 33 | 18, 32 | opeq12d 3865 |
. 2
|
| 34 | mpvlu 7734 |
. . 3
| |
| 35 | 34 | ancoms 268 |
. 2
|
| 36 | mpvlu 7734 |
. 2
| |
| 37 | 33, 35, 36 | 3eqtr4rd 2273 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-recs 6457 df-irdg 6522 df-oadd 6572 df-omul 6573 df-er 6688 df-ec 6690 df-qs 6694 df-ni 7499 df-mi 7501 df-mpq 7540 df-enq 7542 df-nqqs 7543 df-mqqs 7545 df-inp 7661 df-imp 7664 |
| This theorem is referenced by: ltmprr 7837 mulcmpblnrlemg 7935 mulcomsrg 7952 mulasssrg 7953 m1m1sr 7956 recexgt0sr 7968 mulgt0sr 7973 mulextsr1lem 7975 recidpirqlemcalc 8052 |
| Copyright terms: Public domain | W3C validator |