ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulcomprg Unicode version

Theorem mulcomprg 7640
Description: Multiplication of positive reals is commutative. Proposition 9-3.7(ii) of [Gleason] p. 124. (Contributed by Jim Kingdon, 11-Dec-2019.)
Assertion
Ref Expression
mulcomprg  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  .P.  B
)  =  ( B  .P.  A ) )

Proof of Theorem mulcomprg
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prop 7535 . . . . . . . . 9  |-  ( B  e.  P.  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
2 elprnql 7541 . . . . . . . . 9  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  z  e.  ( 1st `  B ) )  -> 
z  e.  Q. )
31, 2sylan 283 . . . . . . . 8  |-  ( ( B  e.  P.  /\  z  e.  ( 1st `  B ) )  -> 
z  e.  Q. )
4 prop 7535 . . . . . . . . . . . . 13  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
5 elprnql 7541 . . . . . . . . . . . . 13  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  y  e.  ( 1st `  A ) )  -> 
y  e.  Q. )
64, 5sylan 283 . . . . . . . . . . . 12  |-  ( ( A  e.  P.  /\  y  e.  ( 1st `  A ) )  -> 
y  e.  Q. )
7 mulcomnqg 7443 . . . . . . . . . . . . 13  |-  ( ( z  e.  Q.  /\  y  e.  Q. )  ->  ( z  .Q  y
)  =  ( y  .Q  z ) )
87eqeq2d 2205 . . . . . . . . . . . 12  |-  ( ( z  e.  Q.  /\  y  e.  Q. )  ->  ( x  =  ( z  .Q  y )  <-> 
x  =  ( y  .Q  z ) ) )
96, 8sylan2 286 . . . . . . . . . . 11  |-  ( ( z  e.  Q.  /\  ( A  e.  P.  /\  y  e.  ( 1st `  A ) ) )  ->  ( x  =  ( z  .Q  y
)  <->  x  =  (
y  .Q  z ) ) )
109anassrs 400 . . . . . . . . . 10  |-  ( ( ( z  e.  Q.  /\  A  e.  P. )  /\  y  e.  ( 1st `  A ) )  ->  ( x  =  ( z  .Q  y
)  <->  x  =  (
y  .Q  z ) ) )
1110rexbidva 2491 . . . . . . . . 9  |-  ( ( z  e.  Q.  /\  A  e.  P. )  ->  ( E. y  e.  ( 1st `  A
) x  =  ( z  .Q  y )  <->  E. y  e.  ( 1st `  A ) x  =  ( y  .Q  z ) ) )
1211ancoms 268 . . . . . . . 8  |-  ( ( A  e.  P.  /\  z  e.  Q. )  ->  ( E. y  e.  ( 1st `  A
) x  =  ( z  .Q  y )  <->  E. y  e.  ( 1st `  A ) x  =  ( y  .Q  z ) ) )
133, 12sylan2 286 . . . . . . 7  |-  ( ( A  e.  P.  /\  ( B  e.  P.  /\  z  e.  ( 1st `  B ) ) )  ->  ( E. y  e.  ( 1st `  A
) x  =  ( z  .Q  y )  <->  E. y  e.  ( 1st `  A ) x  =  ( y  .Q  z ) ) )
1413anassrs 400 . . . . . 6  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  z  e.  ( 1st `  B ) )  ->  ( E. y  e.  ( 1st `  A
) x  =  ( z  .Q  y )  <->  E. y  e.  ( 1st `  A ) x  =  ( y  .Q  z ) ) )
1514rexbidva 2491 . . . . 5  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( E. z  e.  ( 1st `  B
) E. y  e.  ( 1st `  A
) x  =  ( z  .Q  y )  <->  E. z  e.  ( 1st `  B ) E. y  e.  ( 1st `  A ) x  =  ( y  .Q  z
) ) )
16 rexcom 2658 . . . . 5  |-  ( E. z  e.  ( 1st `  B ) E. y  e.  ( 1st `  A
) x  =  ( y  .Q  z )  <->  E. y  e.  ( 1st `  A ) E. z  e.  ( 1st `  B ) x  =  ( y  .Q  z
) )
1715, 16bitrdi 196 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( E. z  e.  ( 1st `  B
) E. y  e.  ( 1st `  A
) x  =  ( z  .Q  y )  <->  E. y  e.  ( 1st `  A ) E. z  e.  ( 1st `  B ) x  =  ( y  .Q  z
) ) )
1817rabbidv 2749 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  { x  e.  Q.  |  E. z  e.  ( 1st `  B ) E. y  e.  ( 1st `  A ) x  =  ( z  .Q  y ) }  =  { x  e. 
Q.  |  E. y  e.  ( 1st `  A
) E. z  e.  ( 1st `  B
) x  =  ( y  .Q  z ) } )
19 elprnqu 7542 . . . . . . . . 9  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  z  e.  ( 2nd `  B ) )  -> 
z  e.  Q. )
201, 19sylan 283 . . . . . . . 8  |-  ( ( B  e.  P.  /\  z  e.  ( 2nd `  B ) )  -> 
z  e.  Q. )
21 elprnqu 7542 . . . . . . . . . . . . 13  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  y  e.  ( 2nd `  A ) )  -> 
y  e.  Q. )
224, 21sylan 283 . . . . . . . . . . . 12  |-  ( ( A  e.  P.  /\  y  e.  ( 2nd `  A ) )  -> 
y  e.  Q. )
2322, 8sylan2 286 . . . . . . . . . . 11  |-  ( ( z  e.  Q.  /\  ( A  e.  P.  /\  y  e.  ( 2nd `  A ) ) )  ->  ( x  =  ( z  .Q  y
)  <->  x  =  (
y  .Q  z ) ) )
2423anassrs 400 . . . . . . . . . 10  |-  ( ( ( z  e.  Q.  /\  A  e.  P. )  /\  y  e.  ( 2nd `  A ) )  ->  ( x  =  ( z  .Q  y
)  <->  x  =  (
y  .Q  z ) ) )
2524rexbidva 2491 . . . . . . . . 9  |-  ( ( z  e.  Q.  /\  A  e.  P. )  ->  ( E. y  e.  ( 2nd `  A
) x  =  ( z  .Q  y )  <->  E. y  e.  ( 2nd `  A ) x  =  ( y  .Q  z ) ) )
2625ancoms 268 . . . . . . . 8  |-  ( ( A  e.  P.  /\  z  e.  Q. )  ->  ( E. y  e.  ( 2nd `  A
) x  =  ( z  .Q  y )  <->  E. y  e.  ( 2nd `  A ) x  =  ( y  .Q  z ) ) )
2720, 26sylan2 286 . . . . . . 7  |-  ( ( A  e.  P.  /\  ( B  e.  P.  /\  z  e.  ( 2nd `  B ) ) )  ->  ( E. y  e.  ( 2nd `  A
) x  =  ( z  .Q  y )  <->  E. y  e.  ( 2nd `  A ) x  =  ( y  .Q  z ) ) )
2827anassrs 400 . . . . . 6  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  z  e.  ( 2nd `  B ) )  ->  ( E. y  e.  ( 2nd `  A
) x  =  ( z  .Q  y )  <->  E. y  e.  ( 2nd `  A ) x  =  ( y  .Q  z ) ) )
2928rexbidva 2491 . . . . 5  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( E. z  e.  ( 2nd `  B
) E. y  e.  ( 2nd `  A
) x  =  ( z  .Q  y )  <->  E. z  e.  ( 2nd `  B ) E. y  e.  ( 2nd `  A ) x  =  ( y  .Q  z
) ) )
30 rexcom 2658 . . . . 5  |-  ( E. z  e.  ( 2nd `  B ) E. y  e.  ( 2nd `  A
) x  =  ( y  .Q  z )  <->  E. y  e.  ( 2nd `  A ) E. z  e.  ( 2nd `  B ) x  =  ( y  .Q  z
) )
3129, 30bitrdi 196 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( E. z  e.  ( 2nd `  B
) E. y  e.  ( 2nd `  A
) x  =  ( z  .Q  y )  <->  E. y  e.  ( 2nd `  A ) E. z  e.  ( 2nd `  B ) x  =  ( y  .Q  z
) ) )
3231rabbidv 2749 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  { x  e.  Q.  |  E. z  e.  ( 2nd `  B ) E. y  e.  ( 2nd `  A ) x  =  ( z  .Q  y ) }  =  { x  e. 
Q.  |  E. y  e.  ( 2nd `  A
) E. z  e.  ( 2nd `  B
) x  =  ( y  .Q  z ) } )
3318, 32opeq12d 3812 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  -> 
<. { x  e.  Q.  |  E. z  e.  ( 1st `  B ) E. y  e.  ( 1st `  A ) x  =  ( z  .Q  y ) } ,  { x  e. 
Q.  |  E. z  e.  ( 2nd `  B
) E. y  e.  ( 2nd `  A
) x  =  ( z  .Q  y ) } >.  =  <. { x  e.  Q.  |  E. y  e.  ( 1st `  A ) E. z  e.  ( 1st `  B ) x  =  ( y  .Q  z
) } ,  {
x  e.  Q.  |  E. y  e.  ( 2nd `  A ) E. z  e.  ( 2nd `  B ) x  =  ( y  .Q  z
) } >. )
34 mpvlu 7599 . . 3  |-  ( ( B  e.  P.  /\  A  e.  P. )  ->  ( B  .P.  A
)  =  <. { x  e.  Q.  |  E. z  e.  ( 1st `  B
) E. y  e.  ( 1st `  A
) x  =  ( z  .Q  y ) } ,  { x  e.  Q.  |  E. z  e.  ( 2nd `  B
) E. y  e.  ( 2nd `  A
) x  =  ( z  .Q  y ) } >. )
3534ancoms 268 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( B  .P.  A
)  =  <. { x  e.  Q.  |  E. z  e.  ( 1st `  B
) E. y  e.  ( 1st `  A
) x  =  ( z  .Q  y ) } ,  { x  e.  Q.  |  E. z  e.  ( 2nd `  B
) E. y  e.  ( 2nd `  A
) x  =  ( z  .Q  y ) } >. )
36 mpvlu 7599 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  .P.  B
)  =  <. { x  e.  Q.  |  E. y  e.  ( 1st `  A
) E. z  e.  ( 1st `  B
) x  =  ( y  .Q  z ) } ,  { x  e.  Q.  |  E. y  e.  ( 2nd `  A
) E. z  e.  ( 2nd `  B
) x  =  ( y  .Q  z ) } >. )
3733, 35, 363eqtr4rd 2237 1  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  .P.  B
)  =  ( B  .P.  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   E.wrex 2473   {crab 2476   <.cop 3621   ` cfv 5254  (class class class)co 5918   1stc1st 6191   2ndc2nd 6192   Q.cnq 7340    .Q cmq 7343   P.cnp 7351    .P. cmp 7354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-oadd 6473  df-omul 6474  df-er 6587  df-ec 6589  df-qs 6593  df-ni 7364  df-mi 7366  df-mpq 7405  df-enq 7407  df-nqqs 7408  df-mqqs 7410  df-inp 7526  df-imp 7529
This theorem is referenced by:  ltmprr  7702  mulcmpblnrlemg  7800  mulcomsrg  7817  mulasssrg  7818  m1m1sr  7821  recexgt0sr  7833  mulgt0sr  7838  mulextsr1lem  7840  recidpirqlemcalc  7917
  Copyright terms: Public domain W3C validator