ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qmulz Unicode version

Theorem qmulz 9001
Description: If  A is rational, then some integer multiple of it is an integer. (Contributed by NM, 7-Nov-2008.) (Revised by Mario Carneiro, 22-Jul-2014.)
Assertion
Ref Expression
qmulz  |-  ( A  e.  QQ  ->  E. x  e.  NN  ( A  x.  x )  e.  ZZ )
Distinct variable group:    x, A

Proof of Theorem qmulz
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 elq 9000 . 2  |-  ( A  e.  QQ  <->  E. y  e.  ZZ  E. x  e.  NN  A  =  ( y  /  x ) )
2 rexcom 2524 . . 3  |-  ( E. y  e.  ZZ  E. x  e.  NN  A  =  ( y  /  x )  <->  E. x  e.  NN  E. y  e.  ZZ  A  =  ( y  /  x ) )
3 zcn 8649 . . . . . . . . 9  |-  ( y  e.  ZZ  ->  y  e.  CC )
43adantl 271 . . . . . . . 8  |-  ( ( x  e.  NN  /\  y  e.  ZZ )  ->  y  e.  CC )
5 nncn 8322 . . . . . . . . 9  |-  ( x  e.  NN  ->  x  e.  CC )
65adantr 270 . . . . . . . 8  |-  ( ( x  e.  NN  /\  y  e.  ZZ )  ->  x  e.  CC )
7 nnap0 8343 . . . . . . . . 9  |-  ( x  e.  NN  ->  x #  0 )
87adantr 270 . . . . . . . 8  |-  ( ( x  e.  NN  /\  y  e.  ZZ )  ->  x #  0 )
94, 6, 8divcanap1d 8153 . . . . . . 7  |-  ( ( x  e.  NN  /\  y  e.  ZZ )  ->  ( ( y  /  x )  x.  x
)  =  y )
10 simpr 108 . . . . . . 7  |-  ( ( x  e.  NN  /\  y  e.  ZZ )  ->  y  e.  ZZ )
119, 10eqeltrd 2159 . . . . . 6  |-  ( ( x  e.  NN  /\  y  e.  ZZ )  ->  ( ( y  /  x )  x.  x
)  e.  ZZ )
12 oveq1 5596 . . . . . . 7  |-  ( A  =  ( y  /  x )  ->  ( A  x.  x )  =  ( ( y  /  x )  x.  x ) )
1312eleq1d 2151 . . . . . 6  |-  ( A  =  ( y  /  x )  ->  (
( A  x.  x
)  e.  ZZ  <->  ( (
y  /  x )  x.  x )  e.  ZZ ) )
1411, 13syl5ibrcom 155 . . . . 5  |-  ( ( x  e.  NN  /\  y  e.  ZZ )  ->  ( A  =  ( y  /  x )  ->  ( A  x.  x )  e.  ZZ ) )
1514rexlimdva 2483 . . . 4  |-  ( x  e.  NN  ->  ( E. y  e.  ZZ  A  =  ( y  /  x )  ->  ( A  x.  x )  e.  ZZ ) )
1615reximia 2462 . . 3  |-  ( E. x  e.  NN  E. y  e.  ZZ  A  =  ( y  /  x )  ->  E. x  e.  NN  ( A  x.  x )  e.  ZZ )
172, 16sylbi 119 . 2  |-  ( E. y  e.  ZZ  E. x  e.  NN  A  =  ( y  /  x )  ->  E. x  e.  NN  ( A  x.  x )  e.  ZZ )
181, 17sylbi 119 1  |-  ( A  e.  QQ  ->  E. x  e.  NN  ( A  x.  x )  e.  ZZ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1285    e. wcel 1434   E.wrex 2354   class class class wbr 3811  (class class class)co 5589   CCcc 7249   0cc0 7251    x. cmul 7256   # cap 7956    / cdiv 8035   NNcn 8314   ZZcz 8644   QQcq 8997
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3922  ax-pow 3974  ax-pr 3999  ax-un 4223  ax-setind 4315  ax-cnex 7337  ax-resscn 7338  ax-1cn 7339  ax-1re 7340  ax-icn 7341  ax-addcl 7342  ax-addrcl 7343  ax-mulcl 7344  ax-mulrcl 7345  ax-addcom 7346  ax-mulcom 7347  ax-addass 7348  ax-mulass 7349  ax-distr 7350  ax-i2m1 7351  ax-0lt1 7352  ax-1rid 7353  ax-0id 7354  ax-rnegex 7355  ax-precex 7356  ax-cnre 7357  ax-pre-ltirr 7358  ax-pre-ltwlin 7359  ax-pre-lttrn 7360  ax-pre-apti 7361  ax-pre-ltadd 7362  ax-pre-mulgt0 7363  ax-pre-mulext 7364
This theorem depends on definitions:  df-bi 115  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rmo 2361  df-rab 2362  df-v 2614  df-sbc 2827  df-csb 2920  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-int 3663  df-iun 3706  df-br 3812  df-opab 3866  df-mpt 3867  df-id 4083  df-po 4086  df-iso 4087  df-xp 4405  df-rel 4406  df-cnv 4407  df-co 4408  df-dm 4409  df-rn 4410  df-res 4411  df-ima 4412  df-iota 4932  df-fun 4969  df-fn 4970  df-f 4971  df-fv 4975  df-riota 5545  df-ov 5592  df-oprab 5593  df-mpt2 5594  df-1st 5844  df-2nd 5845  df-pnf 7425  df-mnf 7426  df-xr 7427  df-ltxr 7428  df-le 7429  df-sub 7556  df-neg 7557  df-reap 7950  df-ap 7957  df-div 8036  df-inn 8315  df-z 8645  df-q 8998
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator