ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlemexbt Unicode version

Theorem caucvgprprlemexbt 7707
Description: Lemma for caucvgprpr 7713. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 16-Jun-2021.)
Hypotheses
Ref Expression
caucvgprpr.f  |-  ( ph  ->  F : N. --> P. )
caucvgprpr.cau  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <P  ( ( F `
 k )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  /\  ( F `  k
)  <P  ( ( F `
 n )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )
) ) )
caucvgprpr.bnd  |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )
caucvgprpr.lim  |-  L  = 
<. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r ) } ,  { u  e.  Q.  |  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  u } ,  { q  |  u 
<Q  q } >. } >.
caucvgprprlemexbt.q  |-  ( ph  ->  Q  e.  Q. )
caucvgprprlemexbt.t  |-  ( ph  ->  T  e.  P. )
caucvgprprlemexbt.lt  |-  ( ph  ->  ( L  +P.  <. { p  |  p  <Q  Q } ,  { q  |  Q  <Q  q } >. )  <P  T )
Assertion
Ref Expression
caucvgprprlemexbt  |-  ( ph  ->  E. b  e.  N.  ( ( ( F `
 b )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  Q } ,  { q  |  Q  <Q  q } >. )  <P  T )
Distinct variable groups:    A, m    m, F    A, r, m    F, b    k, F, l, n, u    F, r    L, b   
k, L    Q, b, p, q    T, b    ph, b    r, b, p, q    k, p, q, r, l, u
Allowed substitution hints:    ph( u, k, m, n, r, q, p, l)    A( u, k, n, q, p, b, l)    Q( u, k, m, n, r, l)    T( u, k, m, n, r, q, p, l)    F( q, p)    L( u, m, n, r, q, p, l)

Proof of Theorem caucvgprprlemexbt
Dummy variables  f  g  h  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caucvgprprlemexbt.lt . . . . 5  |-  ( ph  ->  ( L  +P.  <. { p  |  p  <Q  Q } ,  { q  |  Q  <Q  q } >. )  <P  T )
2 caucvgprpr.f . . . . . . . 8  |-  ( ph  ->  F : N. --> P. )
3 caucvgprpr.cau . . . . . . . 8  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <P  ( ( F `
 k )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  /\  ( F `  k
)  <P  ( ( F `
 n )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )
) ) )
4 caucvgprpr.bnd . . . . . . . 8  |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )
5 caucvgprpr.lim . . . . . . . 8  |-  L  = 
<. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r ) } ,  { u  e.  Q.  |  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  u } ,  { q  |  u 
<Q  q } >. } >.
62, 3, 4, 5caucvgprprlemclphr 7706 . . . . . . 7  |-  ( ph  ->  L  e.  P. )
7 caucvgprprlemexbt.q . . . . . . . 8  |-  ( ph  ->  Q  e.  Q. )
8 nqprlu 7548 . . . . . . . 8  |-  ( Q  e.  Q.  ->  <. { p  |  p  <Q  Q } ,  { q  |  Q  <Q  q } >.  e.  P. )
97, 8syl 14 . . . . . . 7  |-  ( ph  -> 
<. { p  |  p 
<Q  Q } ,  {
q  |  Q  <Q  q } >.  e.  P. )
10 addclpr 7538 . . . . . . 7  |-  ( ( L  e.  P.  /\  <. { p  |  p  <Q  Q } ,  {
q  |  Q  <Q  q } >.  e.  P. )  ->  ( L  +P.  <. { p  |  p  <Q  Q } ,  {
q  |  Q  <Q  q } >. )  e.  P. )
116, 9, 10syl2anc 411 . . . . . 6  |-  ( ph  ->  ( L  +P.  <. { p  |  p  <Q  Q } ,  { q  |  Q  <Q  q } >. )  e.  P. )
12 caucvgprprlemexbt.t . . . . . 6  |-  ( ph  ->  T  e.  P. )
13 ltdfpr 7507 . . . . . 6  |-  ( ( ( L  +P.  <. { p  |  p  <Q  Q } ,  { q  |  Q  <Q  q } >. )  e.  P.  /\  T  e.  P. )  ->  ( ( L  +P.  <. { p  |  p  <Q  Q } ,  {
q  |  Q  <Q  q } >. )  <P  T  <->  E. x  e.  Q.  ( x  e.  ( 2nd `  ( L  +P.  <. { p  |  p  <Q  Q } ,  { q  |  Q  <Q  q } >. )
)  /\  x  e.  ( 1st `  T ) ) ) )
1411, 12, 13syl2anc 411 . . . . 5  |-  ( ph  ->  ( ( L  +P.  <. { p  |  p  <Q  Q } ,  {
q  |  Q  <Q  q } >. )  <P  T  <->  E. x  e.  Q.  ( x  e.  ( 2nd `  ( L  +P.  <. { p  |  p  <Q  Q } ,  { q  |  Q  <Q  q } >. )
)  /\  x  e.  ( 1st `  T ) ) ) )
151, 14mpbid 147 . . . 4  |-  ( ph  ->  E. x  e.  Q.  ( x  e.  ( 2nd `  ( L  +P.  <. { p  |  p  <Q  Q } ,  {
q  |  Q  <Q  q } >. ) )  /\  x  e.  ( 1st `  T ) ) )
166adantr 276 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  e.  ( 2nd `  ( L  +P.  <. { p  |  p  <Q  Q } ,  { q  |  Q  <Q  q } >. )
)  /\  x  e.  ( 1st `  T ) ) ) )  ->  L  e.  P. )
177adantr 276 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  e.  ( 2nd `  ( L  +P.  <. { p  |  p  <Q  Q } ,  { q  |  Q  <Q  q } >. )
)  /\  x  e.  ( 1st `  T ) ) ) )  ->  Q  e.  Q. )
18 simprrl 539 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  e.  ( 2nd `  ( L  +P.  <. { p  |  p  <Q  Q } ,  { q  |  Q  <Q  q } >. )
)  /\  x  e.  ( 1st `  T ) ) ) )  ->  x  e.  ( 2nd `  ( L  +P.  <. { p  |  p  <Q  Q } ,  { q  |  Q  <Q  q } >. ) ) )
1916, 17, 18prplnqu 7621 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  e.  ( 2nd `  ( L  +P.  <. { p  |  p  <Q  Q } ,  { q  |  Q  <Q  q } >. )
)  /\  x  e.  ( 1st `  T ) ) ) )  ->  E. y  e.  ( 2nd `  L ) ( y  +Q  Q )  =  x )
20 simprl 529 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  Q.  /\  ( x  e.  ( 2nd `  ( L  +P.  <. { p  |  p  <Q  Q } ,  {
q  |  Q  <Q  q } >. ) )  /\  x  e.  ( 1st `  T ) ) ) )  /\  ( y  e.  ( 2nd `  L
)  /\  ( y  +Q  Q )  =  x ) )  ->  y  e.  ( 2nd `  L
) )
21 breq2 4009 . . . . . . . . . . . . . . . . 17  |-  ( u  =  y  ->  (
p  <Q  u  <->  p  <Q  y ) )
2221abbidv 2295 . . . . . . . . . . . . . . . 16  |-  ( u  =  y  ->  { p  |  p  <Q  u }  =  { p  |  p 
<Q  y } )
23 breq1 4008 . . . . . . . . . . . . . . . . 17  |-  ( u  =  y  ->  (
u  <Q  q  <->  y  <Q  q ) )
2423abbidv 2295 . . . . . . . . . . . . . . . 16  |-  ( u  =  y  ->  { q  |  u  <Q  q }  =  { q  |  y  <Q  q } )
2522, 24opeq12d 3788 . . . . . . . . . . . . . . 15  |-  ( u  =  y  ->  <. { p  |  p  <Q  u } ,  { q  |  u 
<Q  q } >.  =  <. { p  |  p  <Q  y } ,  { q  |  y  <Q  q } >. )
2625breq2d 4017 . . . . . . . . . . . . . 14  |-  ( u  =  y  ->  (
( ( F `  r )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  u } ,  {
q  |  u  <Q  q } >.  <->  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  y } ,  { q  |  y 
<Q  q } >. )
)
2726rexbidv 2478 . . . . . . . . . . . . 13  |-  ( u  =  y  ->  ( E. r  e.  N.  ( ( F `  r )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  u } ,  {
q  |  u  <Q  q } >.  <->  E. r  e.  N.  ( ( F `  r )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  y } ,  {
q  |  y  <Q 
q } >. )
)
285fveq2i 5520 . . . . . . . . . . . . . 14  |-  ( 2nd `  L )  =  ( 2nd `  <. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q 
q } >.  <P  ( F `  r ) } ,  { u  e.  Q.  |  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  u } ,  { q  |  u 
<Q  q } >. } >. )
29 nqex 7364 . . . . . . . . . . . . . . . 16  |-  Q.  e.  _V
3029rabex 4149 . . . . . . . . . . . . . . 15  |-  { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q 
q } >.  <P  ( F `  r ) }  e.  _V
3129rabex 4149 . . . . . . . . . . . . . . 15  |-  { u  e.  Q.  |  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  u } ,  { q  |  u 
<Q  q } >. }  e.  _V
3230, 31op2nd 6150 . . . . . . . . . . . . . 14  |-  ( 2nd `  <. { l  e. 
Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
)  <Q  q } >.  <P 
( F `  r
) } ,  {
u  e.  Q.  |  E. r  e.  N.  ( ( F `  r )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  u } ,  {
q  |  u  <Q  q } >. } >. )  =  { u  e.  Q.  |  E. r  e.  N.  ( ( F `  r )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  u } ,  {
q  |  u  <Q  q } >. }
3328, 32eqtri 2198 . . . . . . . . . . . . 13  |-  ( 2nd `  L )  =  {
u  e.  Q.  |  E. r  e.  N.  ( ( F `  r )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  u } ,  {
q  |  u  <Q  q } >. }
3427, 33elrab2 2898 . . . . . . . . . . . 12  |-  ( y  e.  ( 2nd `  L
)  <->  ( y  e. 
Q.  /\  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  y } ,  { q  |  y 
<Q  q } >. )
)
3534biimpi 120 . . . . . . . . . . 11  |-  ( y  e.  ( 2nd `  L
)  ->  ( y  e.  Q.  /\  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  y } ,  { q  |  y 
<Q  q } >. )
)
3635simprd 114 . . . . . . . . . 10  |-  ( y  e.  ( 2nd `  L
)  ->  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  y } ,  { q  |  y 
<Q  q } >. )
3720, 36syl 14 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  Q.  /\  ( x  e.  ( 2nd `  ( L  +P.  <. { p  |  p  <Q  Q } ,  {
q  |  Q  <Q  q } >. ) )  /\  x  e.  ( 1st `  T ) ) ) )  /\  ( y  e.  ( 2nd `  L
)  /\  ( y  +Q  Q )  =  x ) )  ->  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  y } ,  { q  |  y 
<Q  q } >. )
38 fveq2 5517 . . . . . . . . . . . 12  |-  ( r  =  b  ->  ( F `  r )  =  ( F `  b ) )
39 opeq1 3780 . . . . . . . . . . . . . . . . 17  |-  ( r  =  b  ->  <. r ,  1o >.  =  <. b ,  1o >. )
4039eceq1d 6573 . . . . . . . . . . . . . . . 16  |-  ( r  =  b  ->  [ <. r ,  1o >. ]  ~Q  =  [ <. b ,  1o >. ]  ~Q  )
4140fveq2d 5521 . . . . . . . . . . . . . . 15  |-  ( r  =  b  ->  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  =  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )
4241breq2d 4017 . . . . . . . . . . . . . 14  |-  ( r  =  b  ->  (
p  <Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <->  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) )
4342abbidv 2295 . . . . . . . . . . . . 13  |-  ( r  =  b  ->  { p  |  p  <Q  ( *Q
`  [ <. r ,  1o >. ]  ~Q  ) }  =  { p  |  p  <Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  ) } )
4441breq1d 4015 . . . . . . . . . . . . . 14  |-  ( r  =  b  ->  (
( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q  <->  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q  q ) )
4544abbidv 2295 . . . . . . . . . . . . 13  |-  ( r  =  b  ->  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q }  =  {
q  |  ( *Q
`  [ <. b ,  1o >. ]  ~Q  )  <Q  q } )
4643, 45opeq12d 3788 . . . . . . . . . . . 12  |-  ( r  =  b  ->  <. { p  |  p  <Q  ( *Q
`  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q } >.  =  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )
4738, 46oveq12d 5895 . . . . . . . . . . 11  |-  ( r  =  b  ->  (
( F `  r
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q } >. )  =  ( ( F `
 b )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q  q } >. ) )
4847breq1d 4015 . . . . . . . . . 10  |-  ( r  =  b  ->  (
( ( F `  r )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  y } ,  {
q  |  y  <Q 
q } >.  <->  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  y } ,  { q  |  y  <Q  q } >. ) )
4948cbvrexv 2706 . . . . . . . . 9  |-  ( E. r  e.  N.  (
( F `  r
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  y } ,  {
q  |  y  <Q 
q } >.  <->  E. b  e.  N.  ( ( F `
 b )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  y } ,  { q  |  y 
<Q  q } >. )
5037, 49sylib 122 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  Q.  /\  ( x  e.  ( 2nd `  ( L  +P.  <. { p  |  p  <Q  Q } ,  {
q  |  Q  <Q  q } >. ) )  /\  x  e.  ( 1st `  T ) ) ) )  /\  ( y  e.  ( 2nd `  L
)  /\  ( y  +Q  Q )  =  x ) )  ->  E. b  e.  N.  ( ( F `
 b )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  y } ,  { q  |  y 
<Q  q } >. )
51 simpr 110 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  ( x  e.  Q.  /\  ( x  e.  ( 2nd `  ( L  +P.  <. { p  |  p  <Q  Q } ,  { q  |  Q  <Q  q } >. )
)  /\  x  e.  ( 1st `  T ) ) ) )  /\  ( y  e.  ( 2nd `  L )  /\  ( y  +Q  Q )  =  x ) )  /\  b  e.  N. )  /\  (
( F `  b
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  y } ,  {
q  |  y  <Q 
q } >. )  ->  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  y } ,  {
q  |  y  <Q 
q } >. )
52 ltaprg 7620 . . . . . . . . . . . . . . . . 17  |-  ( ( f  e.  P.  /\  g  e.  P.  /\  h  e.  P. )  ->  (
f  <P  g  <->  ( h  +P.  f )  <P  (
h  +P.  g )
) )
5352adantl 277 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( (
ph  /\  ( x  e.  Q.  /\  ( x  e.  ( 2nd `  ( L  +P.  <. { p  |  p  <Q  Q } ,  { q  |  Q  <Q  q } >. )
)  /\  x  e.  ( 1st `  T ) ) ) )  /\  ( y  e.  ( 2nd `  L )  /\  ( y  +Q  Q )  =  x ) )  /\  b  e.  N. )  /\  (
( F `  b
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  y } ,  {
q  |  y  <Q 
q } >. )  /\  ( f  e.  P.  /\  g  e.  P.  /\  h  e.  P. )
)  ->  ( f  <P  g  <->  ( h  +P.  f )  <P  (
h  +P.  g )
) )
542ad4antr 494 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ph  /\  ( x  e.  Q.  /\  ( x  e.  ( 2nd `  ( L  +P.  <. { p  |  p  <Q  Q } ,  { q  |  Q  <Q  q } >. )
)  /\  x  e.  ( 1st `  T ) ) ) )  /\  ( y  e.  ( 2nd `  L )  /\  ( y  +Q  Q )  =  x ) )  /\  b  e.  N. )  /\  (
( F `  b
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  y } ,  {
q  |  y  <Q 
q } >. )  ->  F : N. --> P. )
55 simplr 528 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ph  /\  ( x  e.  Q.  /\  ( x  e.  ( 2nd `  ( L  +P.  <. { p  |  p  <Q  Q } ,  { q  |  Q  <Q  q } >. )
)  /\  x  e.  ( 1st `  T ) ) ) )  /\  ( y  e.  ( 2nd `  L )  /\  ( y  +Q  Q )  =  x ) )  /\  b  e.  N. )  /\  (
( F `  b
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  y } ,  {
q  |  y  <Q 
q } >. )  ->  b  e.  N. )
5654, 55ffvelcdmd 5654 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  ( x  e.  Q.  /\  ( x  e.  ( 2nd `  ( L  +P.  <. { p  |  p  <Q  Q } ,  { q  |  Q  <Q  q } >. )
)  /\  x  e.  ( 1st `  T ) ) ) )  /\  ( y  e.  ( 2nd `  L )  /\  ( y  +Q  Q )  =  x ) )  /\  b  e.  N. )  /\  (
( F `  b
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  y } ,  {
q  |  y  <Q 
q } >. )  ->  ( F `  b
)  e.  P. )
57 recnnpr 7549 . . . . . . . . . . . . . . . . . 18  |-  ( b  e.  N.  ->  <. { p  |  p  <Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >.  e.  P. )
5855, 57syl 14 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  ( x  e.  Q.  /\  ( x  e.  ( 2nd `  ( L  +P.  <. { p  |  p  <Q  Q } ,  { q  |  Q  <Q  q } >. )
)  /\  x  e.  ( 1st `  T ) ) ) )  /\  ( y  e.  ( 2nd `  L )  /\  ( y  +Q  Q )  =  x ) )  /\  b  e.  N. )  /\  (
( F `  b
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  y } ,  {
q  |  y  <Q 
q } >. )  -> 
<. { p  |  p 
<Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q  q } >.  e. 
P. )
59 addclpr 7538 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F `  b
)  e.  P.  /\  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q  q } >.  e. 
P. )  ->  (
( F `  b
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  e.  P. )
6056, 58, 59syl2anc 411 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  ( x  e.  Q.  /\  ( x  e.  ( 2nd `  ( L  +P.  <. { p  |  p  <Q  Q } ,  { q  |  Q  <Q  q } >. )
)  /\  x  e.  ( 1st `  T ) ) ) )  /\  ( y  e.  ( 2nd `  L )  /\  ( y  +Q  Q )  =  x ) )  /\  b  e.  N. )  /\  (
( F `  b
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  y } ,  {
q  |  y  <Q 
q } >. )  ->  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  e.  P. )
6120ad2antrr 488 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ph  /\  ( x  e.  Q.  /\  ( x  e.  ( 2nd `  ( L  +P.  <. { p  |  p  <Q  Q } ,  { q  |  Q  <Q  q } >. )
)  /\  x  e.  ( 1st `  T ) ) ) )  /\  ( y  e.  ( 2nd `  L )  /\  ( y  +Q  Q )  =  x ) )  /\  b  e.  N. )  /\  (
( F `  b
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  y } ,  {
q  |  y  <Q 
q } >. )  ->  y  e.  ( 2nd `  L ) )
6235simpld 112 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  ( 2nd `  L
)  ->  y  e.  Q. )
6361, 62syl 14 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  ( x  e.  Q.  /\  ( x  e.  ( 2nd `  ( L  +P.  <. { p  |  p  <Q  Q } ,  { q  |  Q  <Q  q } >. )
)  /\  x  e.  ( 1st `  T ) ) ) )  /\  ( y  e.  ( 2nd `  L )  /\  ( y  +Q  Q )  =  x ) )  /\  b  e.  N. )  /\  (
( F `  b
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  y } ,  {
q  |  y  <Q 
q } >. )  ->  y  e.  Q. )
64 nqprlu 7548 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  Q.  ->  <. { p  |  p  <Q  y } ,  { q  |  y  <Q  q } >.  e.  P. )
6563, 64syl 14 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  ( x  e.  Q.  /\  ( x  e.  ( 2nd `  ( L  +P.  <. { p  |  p  <Q  Q } ,  { q  |  Q  <Q  q } >. )
)  /\  x  e.  ( 1st `  T ) ) ) )  /\  ( y  e.  ( 2nd `  L )  /\  ( y  +Q  Q )  =  x ) )  /\  b  e.  N. )  /\  (
( F `  b
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  y } ,  {
q  |  y  <Q 
q } >. )  -> 
<. { p  |  p 
<Q  y } ,  {
q  |  y  <Q 
q } >.  e.  P. )
669ad4antr 494 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  ( x  e.  Q.  /\  ( x  e.  ( 2nd `  ( L  +P.  <. { p  |  p  <Q  Q } ,  { q  |  Q  <Q  q } >. )
)  /\  x  e.  ( 1st `  T ) ) ) )  /\  ( y  e.  ( 2nd `  L )  /\  ( y  +Q  Q )  =  x ) )  /\  b  e.  N. )  /\  (
( F `  b
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  y } ,  {
q  |  y  <Q 
q } >. )  -> 
<. { p  |  p 
<Q  Q } ,  {
q  |  Q  <Q  q } >.  e.  P. )
67 addcomprg 7579 . . . . . . . . . . . . . . . . 17  |-  ( ( f  e.  P.  /\  g  e.  P. )  ->  ( f  +P.  g
)  =  ( g  +P.  f ) )
6867adantl 277 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( (
ph  /\  ( x  e.  Q.  /\  ( x  e.  ( 2nd `  ( L  +P.  <. { p  |  p  <Q  Q } ,  { q  |  Q  <Q  q } >. )
)  /\  x  e.  ( 1st `  T ) ) ) )  /\  ( y  e.  ( 2nd `  L )  /\  ( y  +Q  Q )  =  x ) )  /\  b  e.  N. )  /\  (
( F `  b
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  y } ,  {
q  |  y  <Q 
q } >. )  /\  ( f  e.  P.  /\  g  e.  P. )
)  ->  ( f  +P.  g )  =  ( g  +P.  f ) )
6953, 60, 65, 66, 68caovord2d 6046 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  ( x  e.  Q.  /\  ( x  e.  ( 2nd `  ( L  +P.  <. { p  |  p  <Q  Q } ,  { q  |  Q  <Q  q } >. )
)  /\  x  e.  ( 1st `  T ) ) ) )  /\  ( y  e.  ( 2nd `  L )  /\  ( y  +Q  Q )  =  x ) )  /\  b  e.  N. )  /\  (
( F `  b
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  y } ,  {
q  |  y  <Q 
q } >. )  ->  ( ( ( F `
 b )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  y } ,  { q  |  y 
<Q  q } >.  <->  ( (
( F `  b
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  +P.  <. { p  |  p  <Q  Q } ,  { q  |  Q  <Q  q } >. )  <P  ( <. { p  |  p  <Q  y } ,  { q  |  y 
<Q  q } >.  +P.  <. { p  |  p  <Q  Q } ,  { q  |  Q  <Q  q } >. ) ) )
7051, 69mpbid 147 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  ( x  e.  Q.  /\  ( x  e.  ( 2nd `  ( L  +P.  <. { p  |  p  <Q  Q } ,  { q  |  Q  <Q  q } >. )
)  /\  x  e.  ( 1st `  T ) ) ) )  /\  ( y  e.  ( 2nd `  L )  /\  ( y  +Q  Q )  =  x ) )  /\  b  e.  N. )  /\  (
( F `  b
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  y } ,  {
q  |  y  <Q 
q } >. )  ->  ( ( ( F `
 b )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  Q } ,  { q  |  Q  <Q  q } >. )  <P  ( <. { p  |  p  <Q  y } ,  { q  |  y 
<Q  q } >.  +P.  <. { p  |  p  <Q  Q } ,  { q  |  Q  <Q  q } >. ) )
717ad4antr 494 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  ( x  e.  Q.  /\  ( x  e.  ( 2nd `  ( L  +P.  <. { p  |  p  <Q  Q } ,  { q  |  Q  <Q  q } >. )
)  /\  x  e.  ( 1st `  T ) ) ) )  /\  ( y  e.  ( 2nd `  L )  /\  ( y  +Q  Q )  =  x ) )  /\  b  e.  N. )  /\  (
( F `  b
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  y } ,  {
q  |  y  <Q 
q } >. )  ->  Q  e.  Q. )
72 addnqpr 7562 . . . . . . . . . . . . . . 15  |-  ( ( y  e.  Q.  /\  Q  e.  Q. )  -> 
<. { p  |  p 
<Q  ( y  +Q  Q
) } ,  {
q  |  ( y  +Q  Q )  <Q 
q } >.  =  (
<. { p  |  p 
<Q  y } ,  {
q  |  y  <Q 
q } >.  +P.  <. { p  |  p  <Q  Q } ,  { q  |  Q  <Q  q } >. ) )
7363, 71, 72syl2anc 411 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  ( x  e.  Q.  /\  ( x  e.  ( 2nd `  ( L  +P.  <. { p  |  p  <Q  Q } ,  { q  |  Q  <Q  q } >. )
)  /\  x  e.  ( 1st `  T ) ) ) )  /\  ( y  e.  ( 2nd `  L )  /\  ( y  +Q  Q )  =  x ) )  /\  b  e.  N. )  /\  (
( F `  b
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  y } ,  {
q  |  y  <Q 
q } >. )  -> 
<. { p  |  p 
<Q  ( y  +Q  Q
) } ,  {
q  |  ( y  +Q  Q )  <Q 
q } >.  =  (
<. { p  |  p 
<Q  y } ,  {
q  |  y  <Q 
q } >.  +P.  <. { p  |  p  <Q  Q } ,  { q  |  Q  <Q  q } >. ) )
7470, 73breqtrrd 4033 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  ( x  e.  Q.  /\  ( x  e.  ( 2nd `  ( L  +P.  <. { p  |  p  <Q  Q } ,  { q  |  Q  <Q  q } >. )
)  /\  x  e.  ( 1st `  T ) ) ) )  /\  ( y  e.  ( 2nd `  L )  /\  ( y  +Q  Q )  =  x ) )  /\  b  e.  N. )  /\  (
( F `  b
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  y } ,  {
q  |  y  <Q 
q } >. )  ->  ( ( ( F `
 b )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  Q } ,  { q  |  Q  <Q  q } >. )  <P 
<. { p  |  p 
<Q  ( y  +Q  Q
) } ,  {
q  |  ( y  +Q  Q )  <Q 
q } >. )
75 simplrr 536 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( x  e.  Q.  /\  ( x  e.  ( 2nd `  ( L  +P.  <. { p  |  p  <Q  Q } ,  { q  |  Q  <Q  q } >. )
)  /\  x  e.  ( 1st `  T ) ) ) )  /\  ( y  e.  ( 2nd `  L )  /\  ( y  +Q  Q )  =  x ) )  /\  b  e.  N. )  ->  (
y  +Q  Q )  =  x )
7675adantr 276 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  ( x  e.  Q.  /\  ( x  e.  ( 2nd `  ( L  +P.  <. { p  |  p  <Q  Q } ,  { q  |  Q  <Q  q } >. )
)  /\  x  e.  ( 1st `  T ) ) ) )  /\  ( y  e.  ( 2nd `  L )  /\  ( y  +Q  Q )  =  x ) )  /\  b  e.  N. )  /\  (
( F `  b
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  y } ,  {
q  |  y  <Q 
q } >. )  ->  ( y  +Q  Q
)  =  x )
77 breq2 4009 . . . . . . . . . . . . . . . . 17  |-  ( ( y  +Q  Q )  =  x  ->  (
p  <Q  ( y  +Q  Q )  <->  p  <Q  x ) )
7877abbidv 2295 . . . . . . . . . . . . . . . 16  |-  ( ( y  +Q  Q )  =  x  ->  { p  |  p  <Q  ( y  +Q  Q ) }  =  { p  |  p  <Q  x }
)
79 breq1 4008 . . . . . . . . . . . . . . . . 17  |-  ( ( y  +Q  Q )  =  x  ->  (
( y  +Q  Q
)  <Q  q  <->  x  <Q  q ) )
8079abbidv 2295 . . . . . . . . . . . . . . . 16  |-  ( ( y  +Q  Q )  =  x  ->  { q  |  ( y  +Q  Q )  <Q  q }  =  { q  |  x  <Q  q } )
8178, 80opeq12d 3788 . . . . . . . . . . . . . . 15  |-  ( ( y  +Q  Q )  =  x  ->  <. { p  |  p  <Q  ( y  +Q  Q ) } ,  { q  |  ( y  +Q  Q
)  <Q  q } >.  = 
<. { p  |  p 
<Q  x } ,  {
q  |  x  <Q  q } >. )
8281breq2d 4017 . . . . . . . . . . . . . 14  |-  ( ( y  +Q  Q )  =  x  ->  (
( ( ( F `
 b )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  Q } ,  { q  |  Q  <Q  q } >. )  <P 
<. { p  |  p 
<Q  ( y  +Q  Q
) } ,  {
q  |  ( y  +Q  Q )  <Q 
q } >.  <->  ( (
( F `  b
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  +P.  <. { p  |  p  <Q  Q } ,  { q  |  Q  <Q  q } >. )  <P 
<. { p  |  p 
<Q  x } ,  {
q  |  x  <Q  q } >. ) )
8376, 82syl 14 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  ( x  e.  Q.  /\  ( x  e.  ( 2nd `  ( L  +P.  <. { p  |  p  <Q  Q } ,  { q  |  Q  <Q  q } >. )
)  /\  x  e.  ( 1st `  T ) ) ) )  /\  ( y  e.  ( 2nd `  L )  /\  ( y  +Q  Q )  =  x ) )  /\  b  e.  N. )  /\  (
( F `  b
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  y } ,  {
q  |  y  <Q 
q } >. )  ->  ( ( ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  Q } ,  { q  |  Q  <Q  q } >. )  <P  <. { p  |  p  <Q  ( y  +Q  Q ) } ,  { q  |  ( y  +Q  Q
)  <Q  q } >.  <->  (
( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  +P.  <. { p  |  p  <Q  Q } ,  { q  |  Q  <Q  q } >. )  <P 
<. { p  |  p 
<Q  x } ,  {
q  |  x  <Q  q } >. ) )
8474, 83mpbid 147 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  ( x  e.  Q.  /\  ( x  e.  ( 2nd `  ( L  +P.  <. { p  |  p  <Q  Q } ,  { q  |  Q  <Q  q } >. )
)  /\  x  e.  ( 1st `  T ) ) ) )  /\  ( y  e.  ( 2nd `  L )  /\  ( y  +Q  Q )  =  x ) )  /\  b  e.  N. )  /\  (
( F `  b
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  y } ,  {
q  |  y  <Q 
q } >. )  ->  ( ( ( F `
 b )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  Q } ,  { q  |  Q  <Q  q } >. )  <P 
<. { p  |  p 
<Q  x } ,  {
q  |  x  <Q  q } >. )
85 simplrl 535 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  Q.  /\  ( x  e.  ( 2nd `  ( L  +P.  <. { p  |  p  <Q  Q } ,  {
q  |  Q  <Q  q } >. ) )  /\  x  e.  ( 1st `  T ) ) ) )  /\  ( y  e.  ( 2nd `  L
)  /\  ( y  +Q  Q )  =  x ) )  ->  x  e.  Q. )
8685ad2antrr 488 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  ( x  e.  Q.  /\  ( x  e.  ( 2nd `  ( L  +P.  <. { p  |  p  <Q  Q } ,  { q  |  Q  <Q  q } >. )
)  /\  x  e.  ( 1st `  T ) ) ) )  /\  ( y  e.  ( 2nd `  L )  /\  ( y  +Q  Q )  =  x ) )  /\  b  e.  N. )  /\  (
( F `  b
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  y } ,  {
q  |  y  <Q 
q } >. )  ->  x  e.  Q. )
87 addclpr 7538 . . . . . . . . . . . . . 14  |-  ( ( ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  e.  P.  /\  <. { p  |  p  <Q  Q } ,  { q  |  Q  <Q  q } >.  e.  P. )  ->  ( ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  Q } ,  { q  |  Q  <Q  q } >. )  e.  P. )
8860, 66, 87syl2anc 411 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  ( x  e.  Q.  /\  ( x  e.  ( 2nd `  ( L  +P.  <. { p  |  p  <Q  Q } ,  { q  |  Q  <Q  q } >. )
)  /\  x  e.  ( 1st `  T ) ) ) )  /\  ( y  e.  ( 2nd `  L )  /\  ( y  +Q  Q )  =  x ) )  /\  b  e.  N. )  /\  (
( F `  b
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  y } ,  {
q  |  y  <Q 
q } >. )  ->  ( ( ( F `
 b )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  Q } ,  { q  |  Q  <Q  q } >. )  e.  P. )
89 nqpru 7553 . . . . . . . . . . . . 13  |-  ( ( x  e.  Q.  /\  ( ( ( F `
 b )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  Q } ,  { q  |  Q  <Q  q } >. )  e.  P. )  ->  (
x  e.  ( 2nd `  ( ( ( F `
 b )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  Q } ,  { q  |  Q  <Q  q } >. )
)  <->  ( ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  Q } ,  { q  |  Q  <Q  q } >. )  <P  <. { p  |  p  <Q  x } ,  { q  |  x 
<Q  q } >. )
)
9086, 88, 89syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  ( x  e.  Q.  /\  ( x  e.  ( 2nd `  ( L  +P.  <. { p  |  p  <Q  Q } ,  { q  |  Q  <Q  q } >. )
)  /\  x  e.  ( 1st `  T ) ) ) )  /\  ( y  e.  ( 2nd `  L )  /\  ( y  +Q  Q )  =  x ) )  /\  b  e.  N. )  /\  (
( F `  b
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  y } ,  {
q  |  y  <Q 
q } >. )  ->  ( x  e.  ( 2nd `  ( ( ( F `  b
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  +P.  <. { p  |  p  <Q  Q } ,  { q  |  Q  <Q  q } >. )
)  <->  ( ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  Q } ,  { q  |  Q  <Q  q } >. )  <P  <. { p  |  p  <Q  x } ,  { q  |  x 
<Q  q } >. )
)
9184, 90mpbird 167 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  ( x  e.  Q.  /\  ( x  e.  ( 2nd `  ( L  +P.  <. { p  |  p  <Q  Q } ,  { q  |  Q  <Q  q } >. )
)  /\  x  e.  ( 1st `  T ) ) ) )  /\  ( y  e.  ( 2nd `  L )  /\  ( y  +Q  Q )  =  x ) )  /\  b  e.  N. )  /\  (
( F `  b
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  y } ,  {
q  |  y  <Q 
q } >. )  ->  x  e.  ( 2nd `  ( ( ( F `
 b )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  Q } ,  { q  |  Q  <Q  q } >. )
) )
92 simprrr 540 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  e.  ( 2nd `  ( L  +P.  <. { p  |  p  <Q  Q } ,  { q  |  Q  <Q  q } >. )
)  /\  x  e.  ( 1st `  T ) ) ) )  ->  x  e.  ( 1st `  T ) )
9392ad3antrrr 492 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  ( x  e.  Q.  /\  ( x  e.  ( 2nd `  ( L  +P.  <. { p  |  p  <Q  Q } ,  { q  |  Q  <Q  q } >. )
)  /\  x  e.  ( 1st `  T ) ) ) )  /\  ( y  e.  ( 2nd `  L )  /\  ( y  +Q  Q )  =  x ) )  /\  b  e.  N. )  /\  (
( F `  b
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  y } ,  {
q  |  y  <Q 
q } >. )  ->  x  e.  ( 1st `  T ) )
9491, 93jca 306 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  ( x  e.  Q.  /\  ( x  e.  ( 2nd `  ( L  +P.  <. { p  |  p  <Q  Q } ,  { q  |  Q  <Q  q } >. )
)  /\  x  e.  ( 1st `  T ) ) ) )  /\  ( y  e.  ( 2nd `  L )  /\  ( y  +Q  Q )  =  x ) )  /\  b  e.  N. )  /\  (
( F `  b
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  y } ,  {
q  |  y  <Q 
q } >. )  ->  ( x  e.  ( 2nd `  ( ( ( F `  b
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  +P.  <. { p  |  p  <Q  Q } ,  { q  |  Q  <Q  q } >. )
)  /\  x  e.  ( 1st `  T ) ) )
9594ex 115 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( x  e.  Q.  /\  ( x  e.  ( 2nd `  ( L  +P.  <. { p  |  p  <Q  Q } ,  { q  |  Q  <Q  q } >. )
)  /\  x  e.  ( 1st `  T ) ) ) )  /\  ( y  e.  ( 2nd `  L )  /\  ( y  +Q  Q )  =  x ) )  /\  b  e.  N. )  ->  (
( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  y } ,  {
q  |  y  <Q 
q } >.  ->  (
x  e.  ( 2nd `  ( ( ( F `
 b )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  Q } ,  { q  |  Q  <Q  q } >. )
)  /\  x  e.  ( 1st `  T ) ) ) )
9695reximdva 2579 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  Q.  /\  ( x  e.  ( 2nd `  ( L  +P.  <. { p  |  p  <Q  Q } ,  {
q  |  Q  <Q  q } >. ) )  /\  x  e.  ( 1st `  T ) ) ) )  /\  ( y  e.  ( 2nd `  L
)  /\  ( y  +Q  Q )  =  x ) )  ->  ( E. b  e.  N.  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  y } ,  {
q  |  y  <Q 
q } >.  ->  E. b  e.  N.  ( x  e.  ( 2nd `  (
( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  +P.  <. { p  |  p  <Q  Q } ,  { q  |  Q  <Q  q } >. )
)  /\  x  e.  ( 1st `  T ) ) ) )
9750, 96mpd 13 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  Q.  /\  ( x  e.  ( 2nd `  ( L  +P.  <. { p  |  p  <Q  Q } ,  {
q  |  Q  <Q  q } >. ) )  /\  x  e.  ( 1st `  T ) ) ) )  /\  ( y  e.  ( 2nd `  L
)  /\  ( y  +Q  Q )  =  x ) )  ->  E. b  e.  N.  ( x  e.  ( 2nd `  (
( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  +P.  <. { p  |  p  <Q  Q } ,  { q  |  Q  <Q  q } >. )
)  /\  x  e.  ( 1st `  T ) ) )
9819, 97rexlimddv 2599 . . . . . 6  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  e.  ( 2nd `  ( L  +P.  <. { p  |  p  <Q  Q } ,  { q  |  Q  <Q  q } >. )
)  /\  x  e.  ( 1st `  T ) ) ) )  ->  E. b  e.  N.  ( x  e.  ( 2nd `  ( ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  Q } ,  { q  |  Q  <Q  q } >. ) )  /\  x  e.  ( 1st `  T ) ) )
9998expr 375 . . . . 5  |-  ( (
ph  /\  x  e.  Q. )  ->  ( ( x  e.  ( 2nd `  ( L  +P.  <. { p  |  p  <Q  Q } ,  { q  |  Q  <Q  q } >. ) )  /\  x  e.  ( 1st `  T ) )  ->  E. b  e.  N.  ( x  e.  ( 2nd `  ( ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  Q } ,  { q  |  Q  <Q  q } >. ) )  /\  x  e.  ( 1st `  T ) ) ) )
10099reximdva 2579 . . . 4  |-  ( ph  ->  ( E. x  e. 
Q.  ( x  e.  ( 2nd `  ( L  +P.  <. { p  |  p  <Q  Q } ,  { q  |  Q  <Q  q } >. )
)  /\  x  e.  ( 1st `  T ) )  ->  E. x  e.  Q.  E. b  e. 
N.  ( x  e.  ( 2nd `  (
( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  +P.  <. { p  |  p  <Q  Q } ,  { q  |  Q  <Q  q } >. )
)  /\  x  e.  ( 1st `  T ) ) ) )
10115, 100mpd 13 . . 3  |-  ( ph  ->  E. x  e.  Q.  E. b  e.  N.  (
x  e.  ( 2nd `  ( ( ( F `
 b )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  Q } ,  { q  |  Q  <Q  q } >. )
)  /\  x  e.  ( 1st `  T ) ) )
102 rexcom 2641 . . 3  |-  ( E. x  e.  Q.  E. b  e.  N.  (
x  e.  ( 2nd `  ( ( ( F `
 b )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  Q } ,  { q  |  Q  <Q  q } >. )
)  /\  x  e.  ( 1st `  T ) )  <->  E. b  e.  N.  E. x  e.  Q.  (
x  e.  ( 2nd `  ( ( ( F `
 b )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  Q } ,  { q  |  Q  <Q  q } >. )
)  /\  x  e.  ( 1st `  T ) ) )
103101, 102sylib 122 . 2  |-  ( ph  ->  E. b  e.  N.  E. x  e.  Q.  (
x  e.  ( 2nd `  ( ( ( F `
 b )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  Q } ,  { q  |  Q  <Q  q } >. )
)  /\  x  e.  ( 1st `  T ) ) )
1042ffvelcdmda 5653 . . . . . 6  |-  ( (
ph  /\  b  e.  N. )  ->  ( F `
 b )  e. 
P. )
10557adantl 277 . . . . . 6  |-  ( (
ph  /\  b  e.  N. )  ->  <. { p  |  p  <Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >.  e.  P. )
106104, 105, 59syl2anc 411 . . . . 5  |-  ( (
ph  /\  b  e.  N. )  ->  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q  q } >. )  e.  P. )
1079adantr 276 . . . . 5  |-  ( (
ph  /\  b  e.  N. )  ->  <. { p  |  p  <Q  Q } ,  { q  |  Q  <Q  q } >.  e.  P. )
108106, 107, 87syl2anc 411 . . . 4  |-  ( (
ph  /\  b  e.  N. )  ->  ( ( ( F `  b
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  +P.  <. { p  |  p  <Q  Q } ,  { q  |  Q  <Q  q } >. )  e.  P. )
10912adantr 276 . . . 4  |-  ( (
ph  /\  b  e.  N. )  ->  T  e. 
P. )
110 ltdfpr 7507 . . . 4  |-  ( ( ( ( ( F `
 b )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  Q } ,  { q  |  Q  <Q  q } >. )  e.  P.  /\  T  e. 
P. )  ->  (
( ( ( F `
 b )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  Q } ,  { q  |  Q  <Q  q } >. )  <P  T  <->  E. x  e.  Q.  ( x  e.  ( 2nd `  ( ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  Q } ,  { q  |  Q  <Q  q } >. ) )  /\  x  e.  ( 1st `  T ) ) ) )
111108, 109, 110syl2anc 411 . . 3  |-  ( (
ph  /\  b  e.  N. )  ->  ( ( ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  +P.  <. { p  |  p  <Q  Q } ,  { q  |  Q  <Q  q } >. )  <P  T  <->  E. x  e.  Q.  ( x  e.  ( 2nd `  ( ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  Q } ,  { q  |  Q  <Q  q } >. ) )  /\  x  e.  ( 1st `  T ) ) ) )
112111rexbidva 2474 . 2  |-  ( ph  ->  ( E. b  e. 
N.  ( ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  Q } ,  { q  |  Q  <Q  q } >. )  <P  T  <->  E. b  e.  N.  E. x  e. 
Q.  ( x  e.  ( 2nd `  (
( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  +P.  <. { p  |  p  <Q  Q } ,  { q  |  Q  <Q  q } >. )
)  /\  x  e.  ( 1st `  T ) ) ) )
113103, 112mpbird 167 1  |-  ( ph  ->  E. b  e.  N.  ( ( ( F `
 b )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q  q } >. )  +P.  <. { p  |  p  <Q  Q } ,  { q  |  Q  <Q  q } >. )  <P  T )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2148   {cab 2163   A.wral 2455   E.wrex 2456   {crab 2459   <.cop 3597   class class class wbr 4005   -->wf 5214   ` cfv 5218  (class class class)co 5877   1stc1st 6141   2ndc2nd 6142   1oc1o 6412   [cec 6535   N.cnpi 7273    <N clti 7276    ~Q ceq 7280   Q.cnq 7281    +Q cplq 7283   *Qcrq 7285    <Q cltq 7286   P.cnp 7292    +P. cpp 7294    <P cltp 7296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-eprel 4291  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-irdg 6373  df-1o 6419  df-2o 6420  df-oadd 6423  df-omul 6424  df-er 6537  df-ec 6539  df-qs 6543  df-ni 7305  df-pli 7306  df-mi 7307  df-lti 7308  df-plpq 7345  df-mpq 7346  df-enq 7348  df-nqqs 7349  df-plqqs 7350  df-mqqs 7351  df-1nqqs 7352  df-rq 7353  df-ltnqqs 7354  df-enq0 7425  df-nq0 7426  df-0nq0 7427  df-plq0 7428  df-mq0 7429  df-inp 7467  df-iplp 7469  df-iltp 7471
This theorem is referenced by:  caucvgprprlemexb  7708
  Copyright terms: Public domain W3C validator