ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caubnd2 Unicode version

Theorem caubnd2 11261
Description: A Cauchy sequence of complex numbers is eventually bounded. (Contributed by Mario Carneiro, 14-Feb-2014.)
Hypothesis
Ref Expression
cau3.1  |-  Z  =  ( ZZ>= `  M )
Assertion
Ref Expression
caubnd2  |-  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  ->  E. y  e.  RR  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( F `  k
) )  <  y
)
Distinct variable groups:    j, k, x, y, F    j, M, k, x    j, Z, k, x, y
Allowed substitution hint:    M( y)

Proof of Theorem caubnd2
StepHypRef Expression
1 1rp 9723 . . 3  |-  1  e.  RR+
2 breq2 4033 . . . . . 6  |-  ( x  =  1  ->  (
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x  <->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  1
) )
32anbi2d 464 . . . . 5  |-  ( x  =  1  ->  (
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  <-> 
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  1 ) ) )
43rexralbidv 2520 . . . 4  |-  ( x  =  1  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x )  <->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  1 ) ) )
54rspcv 2860 . . 3  |-  ( 1  e.  RR+  ->  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  1 ) ) )
61, 5ax-mp 5 . 2  |-  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  1 ) )
7 eluzelz 9601 . . . . . . . . . . 11  |-  ( j  e.  ( ZZ>= `  M
)  ->  j  e.  ZZ )
8 cau3.1 . . . . . . . . . . 11  |-  Z  =  ( ZZ>= `  M )
97, 8eleq2s 2288 . . . . . . . . . 10  |-  ( j  e.  Z  ->  j  e.  ZZ )
10 uzid 9606 . . . . . . . . . 10  |-  ( j  e.  ZZ  ->  j  e.  ( ZZ>= `  j )
)
119, 10syl 14 . . . . . . . . 9  |-  ( j  e.  Z  ->  j  e.  ( ZZ>= `  j )
)
12 simpl 109 . . . . . . . . . 10  |-  ( ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  1 )  -> 
( F `  k
)  e.  CC )
1312ralimi 2557 . . . . . . . . 9  |-  ( A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  1
)  ->  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  CC )
14 fveq2 5554 . . . . . . . . . . 11  |-  ( k  =  j  ->  ( F `  k )  =  ( F `  j ) )
1514eleq1d 2262 . . . . . . . . . 10  |-  ( k  =  j  ->  (
( F `  k
)  e.  CC  <->  ( F `  j )  e.  CC ) )
1615rspcva 2862 . . . . . . . . 9  |-  ( ( j  e.  ( ZZ>= `  j )  /\  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  CC )  ->  ( F `  j )  e.  CC )
1711, 13, 16syl2an 289 . . . . . . . 8  |-  ( ( j  e.  Z  /\  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  1
) )  ->  ( F `  j )  e.  CC )
18 abscl 11195 . . . . . . . 8  |-  ( ( F `  j )  e.  CC  ->  ( abs `  ( F `  j ) )  e.  RR )
1917, 18syl 14 . . . . . . 7  |-  ( ( j  e.  Z  /\  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  1
) )  ->  ( abs `  ( F `  j ) )  e.  RR )
20 1re 8018 . . . . . . 7  |-  1  e.  RR
21 readdcl 7998 . . . . . . 7  |-  ( ( ( abs `  ( F `  j )
)  e.  RR  /\  1  e.  RR )  ->  ( ( abs `  ( F `  j )
)  +  1 )  e.  RR )
2219, 20, 21sylancl 413 . . . . . 6  |-  ( ( j  e.  Z  /\  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  1
) )  ->  (
( abs `  ( F `  j )
)  +  1 )  e.  RR )
23 simpr 110 . . . . . . . . . . . . 13  |-  ( ( ( j  e.  Z  /\  ( F `  j
)  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( F `  k )  e.  CC )
24 simplr 528 . . . . . . . . . . . . 13  |-  ( ( ( j  e.  Z  /\  ( F `  j
)  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( F `  j )  e.  CC )
25 abs2dif 11250 . . . . . . . . . . . . 13  |-  ( ( ( F `  k
)  e.  CC  /\  ( F `  j )  e.  CC )  -> 
( ( abs `  ( F `  k )
)  -  ( abs `  ( F `  j
) ) )  <_ 
( abs `  (
( F `  k
)  -  ( F `
 j ) ) ) )
2623, 24, 25syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( j  e.  Z  /\  ( F `  j
)  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( ( abs `  ( F `  k
) )  -  ( abs `  ( F `  j ) ) )  <_  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) ) )
27 abscl 11195 . . . . . . . . . . . . . . 15  |-  ( ( F `  k )  e.  CC  ->  ( abs `  ( F `  k ) )  e.  RR )
2823, 27syl 14 . . . . . . . . . . . . . 14  |-  ( ( ( j  e.  Z  /\  ( F `  j
)  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( abs `  ( F `  k )
)  e.  RR )
2924, 18syl 14 . . . . . . . . . . . . . 14  |-  ( ( ( j  e.  Z  /\  ( F `  j
)  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( abs `  ( F `  j )
)  e.  RR )
3028, 29resubcld 8400 . . . . . . . . . . . . 13  |-  ( ( ( j  e.  Z  /\  ( F `  j
)  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( ( abs `  ( F `  k
) )  -  ( abs `  ( F `  j ) ) )  e.  RR )
3123, 24subcld 8330 . . . . . . . . . . . . . 14  |-  ( ( ( j  e.  Z  /\  ( F `  j
)  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( ( F `
 k )  -  ( F `  j ) )  e.  CC )
32 abscl 11195 . . . . . . . . . . . . . 14  |-  ( ( ( F `  k
)  -  ( F `
 j ) )  e.  CC  ->  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  e.  RR )
3331, 32syl 14 . . . . . . . . . . . . 13  |-  ( ( ( j  e.  Z  /\  ( F `  j
)  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  e.  RR )
34 lelttr 8108 . . . . . . . . . . . . . 14  |-  ( ( ( ( abs `  ( F `  k )
)  -  ( abs `  ( F `  j
) ) )  e.  RR  /\  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  e.  RR  /\  1  e.  RR )  ->  ( ( ( ( abs `  ( F `  k )
)  -  ( abs `  ( F `  j
) ) )  <_ 
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  /\  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  1
)  ->  ( ( abs `  ( F `  k ) )  -  ( abs `  ( F `
 j ) ) )  <  1 ) )
3520, 34mp3an3 1337 . . . . . . . . . . . . 13  |-  ( ( ( ( abs `  ( F `  k )
)  -  ( abs `  ( F `  j
) ) )  e.  RR  /\  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  e.  RR )  ->  ( ( ( ( abs `  ( F `  k )
)  -  ( abs `  ( F `  j
) ) )  <_ 
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  /\  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  1
)  ->  ( ( abs `  ( F `  k ) )  -  ( abs `  ( F `
 j ) ) )  <  1 ) )
3630, 33, 35syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( j  e.  Z  /\  ( F `  j
)  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( ( ( ( abs `  ( F `  k )
)  -  ( abs `  ( F `  j
) ) )  <_ 
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  /\  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  1
)  ->  ( ( abs `  ( F `  k ) )  -  ( abs `  ( F `
 j ) ) )  <  1 ) )
3726, 36mpand 429 . . . . . . . . . . 11  |-  ( ( ( j  e.  Z  /\  ( F `  j
)  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  1  ->  ( ( abs `  ( F `  k )
)  -  ( abs `  ( F `  j
) ) )  <  1 ) )
38 ltsubadd2 8452 . . . . . . . . . . . . 13  |-  ( ( ( abs `  ( F `  k )
)  e.  RR  /\  ( abs `  ( F `
 j ) )  e.  RR  /\  1  e.  RR )  ->  (
( ( abs `  ( F `  k )
)  -  ( abs `  ( F `  j
) ) )  <  1  <->  ( abs `  ( F `  k )
)  <  ( ( abs `  ( F `  j ) )  +  1 ) ) )
3920, 38mp3an3 1337 . . . . . . . . . . . 12  |-  ( ( ( abs `  ( F `  k )
)  e.  RR  /\  ( abs `  ( F `
 j ) )  e.  RR )  -> 
( ( ( abs `  ( F `  k
) )  -  ( abs `  ( F `  j ) ) )  <  1  <->  ( abs `  ( F `  k
) )  <  (
( abs `  ( F `  j )
)  +  1 ) ) )
4028, 29, 39syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( j  e.  Z  /\  ( F `  j
)  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( ( ( abs `  ( F `
 k ) )  -  ( abs `  ( F `  j )
) )  <  1  <->  ( abs `  ( F `
 k ) )  <  ( ( abs `  ( F `  j
) )  +  1 ) ) )
4137, 40sylibd 149 . . . . . . . . . 10  |-  ( ( ( j  e.  Z  /\  ( F `  j
)  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  1  ->  ( abs `  ( F `  k )
)  <  ( ( abs `  ( F `  j ) )  +  1 ) ) )
4241expimpd 363 . . . . . . . . 9  |-  ( ( j  e.  Z  /\  ( F `  j )  e.  CC )  -> 
( ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  1
)  ->  ( abs `  ( F `  k
) )  <  (
( abs `  ( F `  j )
)  +  1 ) ) )
4342ralimdv 2562 . . . . . . . 8  |-  ( ( j  e.  Z  /\  ( F `  j )  e.  CC )  -> 
( A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  1 )  ->  A. k  e.  (
ZZ>= `  j ) ( abs `  ( F `
 k ) )  <  ( ( abs `  ( F `  j
) )  +  1 ) ) )
4443impancom 260 . . . . . . 7  |-  ( ( j  e.  Z  /\  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  1
) )  ->  (
( F `  j
)  e.  CC  ->  A. k  e.  ( ZZ>= `  j ) ( abs `  ( F `  k
) )  <  (
( abs `  ( F `  j )
)  +  1 ) ) )
4517, 44mpd 13 . . . . . 6  |-  ( ( j  e.  Z  /\  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  1
) )  ->  A. k  e.  ( ZZ>= `  j )
( abs `  ( F `  k )
)  <  ( ( abs `  ( F `  j ) )  +  1 ) )
46 breq2 4033 . . . . . . . 8  |-  ( y  =  ( ( abs `  ( F `  j
) )  +  1 )  ->  ( ( abs `  ( F `  k ) )  < 
y  <->  ( abs `  ( F `  k )
)  <  ( ( abs `  ( F `  j ) )  +  1 ) ) )
4746ralbidv 2494 . . . . . . 7  |-  ( y  =  ( ( abs `  ( F `  j
) )  +  1 )  ->  ( A. k  e.  ( ZZ>= `  j ) ( abs `  ( F `  k
) )  <  y  <->  A. k  e.  ( ZZ>= `  j ) ( abs `  ( F `  k
) )  <  (
( abs `  ( F `  j )
)  +  1 ) ) )
4847rspcev 2864 . . . . . 6  |-  ( ( ( ( abs `  ( F `  j )
)  +  1 )  e.  RR  /\  A. k  e.  ( ZZ>= `  j ) ( abs `  ( F `  k
) )  <  (
( abs `  ( F `  j )
)  +  1 ) )  ->  E. y  e.  RR  A. k  e.  ( ZZ>= `  j )
( abs `  ( F `  k )
)  <  y )
4922, 45, 48syl2anc 411 . . . . 5  |-  ( ( j  e.  Z  /\  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  1
) )  ->  E. y  e.  RR  A. k  e.  ( ZZ>= `  j )
( abs `  ( F `  k )
)  <  y )
5049ex 115 . . . 4  |-  ( j  e.  Z  ->  ( A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  1 )  ->  E. y  e.  RR  A. k  e.  ( ZZ>= `  j ) ( abs `  ( F `  k
) )  <  y
) )
5150reximia 2589 . . 3  |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  1
)  ->  E. j  e.  Z  E. y  e.  RR  A. k  e.  ( ZZ>= `  j )
( abs `  ( F `  k )
)  <  y )
52 rexcom 2658 . . 3  |-  ( E. j  e.  Z  E. y  e.  RR  A. k  e.  ( ZZ>= `  j )
( abs `  ( F `  k )
)  <  y  <->  E. y  e.  RR  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  ( F `  k )
)  <  y )
5351, 52sylib 122 . 2  |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  1
)  ->  E. y  e.  RR  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  ( F `  k )
)  <  y )
546, 53syl 14 1  |-  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  ->  E. y  e.  RR  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( F `  k
) )  <  y
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   A.wral 2472   E.wrex 2473   class class class wbr 4029   ` cfv 5254  (class class class)co 5918   CCcc 7870   RRcr 7871   1c1 7873    + caddc 7875    < clt 8054    <_ cle 8055    - cmin 8190   ZZcz 9317   ZZ>=cuz 9592   RR+crp 9719   abscabs 11141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-rp 9720  df-seqfrec 10519  df-exp 10610  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator