ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caubnd2 Unicode version

Theorem caubnd2 10840
Description: A Cauchy sequence of complex numbers is eventually bounded. (Contributed by Mario Carneiro, 14-Feb-2014.)
Hypothesis
Ref Expression
cau3.1  |-  Z  =  ( ZZ>= `  M )
Assertion
Ref Expression
caubnd2  |-  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  ->  E. y  e.  RR  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( F `  k
) )  <  y
)
Distinct variable groups:    j, k, x, y, F    j, M, k, x    j, Z, k, x, y
Allowed substitution hint:    M( y)

Proof of Theorem caubnd2
StepHypRef Expression
1 1rp 9397 . . 3  |-  1  e.  RR+
2 breq2 3901 . . . . . 6  |-  ( x  =  1  ->  (
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x  <->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  1
) )
32anbi2d 457 . . . . 5  |-  ( x  =  1  ->  (
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  <-> 
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  1 ) ) )
43rexralbidv 2436 . . . 4  |-  ( x  =  1  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x )  <->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  1 ) ) )
54rspcv 2757 . . 3  |-  ( 1  e.  RR+  ->  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  1 ) ) )
61, 5ax-mp 5 . 2  |-  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  1 ) )
7 eluzelz 9287 . . . . . . . . . . 11  |-  ( j  e.  ( ZZ>= `  M
)  ->  j  e.  ZZ )
8 cau3.1 . . . . . . . . . . 11  |-  Z  =  ( ZZ>= `  M )
97, 8eleq2s 2210 . . . . . . . . . 10  |-  ( j  e.  Z  ->  j  e.  ZZ )
10 uzid 9292 . . . . . . . . . 10  |-  ( j  e.  ZZ  ->  j  e.  ( ZZ>= `  j )
)
119, 10syl 14 . . . . . . . . 9  |-  ( j  e.  Z  ->  j  e.  ( ZZ>= `  j )
)
12 simpl 108 . . . . . . . . . 10  |-  ( ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  1 )  -> 
( F `  k
)  e.  CC )
1312ralimi 2470 . . . . . . . . 9  |-  ( A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  1
)  ->  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  CC )
14 fveq2 5387 . . . . . . . . . . 11  |-  ( k  =  j  ->  ( F `  k )  =  ( F `  j ) )
1514eleq1d 2184 . . . . . . . . . 10  |-  ( k  =  j  ->  (
( F `  k
)  e.  CC  <->  ( F `  j )  e.  CC ) )
1615rspcva 2759 . . . . . . . . 9  |-  ( ( j  e.  ( ZZ>= `  j )  /\  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  CC )  ->  ( F `  j )  e.  CC )
1711, 13, 16syl2an 285 . . . . . . . 8  |-  ( ( j  e.  Z  /\  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  1
) )  ->  ( F `  j )  e.  CC )
18 abscl 10774 . . . . . . . 8  |-  ( ( F `  j )  e.  CC  ->  ( abs `  ( F `  j ) )  e.  RR )
1917, 18syl 14 . . . . . . 7  |-  ( ( j  e.  Z  /\  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  1
) )  ->  ( abs `  ( F `  j ) )  e.  RR )
20 1re 7729 . . . . . . 7  |-  1  e.  RR
21 readdcl 7710 . . . . . . 7  |-  ( ( ( abs `  ( F `  j )
)  e.  RR  /\  1  e.  RR )  ->  ( ( abs `  ( F `  j )
)  +  1 )  e.  RR )
2219, 20, 21sylancl 407 . . . . . 6  |-  ( ( j  e.  Z  /\  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  1
) )  ->  (
( abs `  ( F `  j )
)  +  1 )  e.  RR )
23 simpr 109 . . . . . . . . . . . . 13  |-  ( ( ( j  e.  Z  /\  ( F `  j
)  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( F `  k )  e.  CC )
24 simplr 502 . . . . . . . . . . . . 13  |-  ( ( ( j  e.  Z  /\  ( F `  j
)  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( F `  j )  e.  CC )
25 abs2dif 10829 . . . . . . . . . . . . 13  |-  ( ( ( F `  k
)  e.  CC  /\  ( F `  j )  e.  CC )  -> 
( ( abs `  ( F `  k )
)  -  ( abs `  ( F `  j
) ) )  <_ 
( abs `  (
( F `  k
)  -  ( F `
 j ) ) ) )
2623, 24, 25syl2anc 406 . . . . . . . . . . . 12  |-  ( ( ( j  e.  Z  /\  ( F `  j
)  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( ( abs `  ( F `  k
) )  -  ( abs `  ( F `  j ) ) )  <_  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) ) )
27 abscl 10774 . . . . . . . . . . . . . . 15  |-  ( ( F `  k )  e.  CC  ->  ( abs `  ( F `  k ) )  e.  RR )
2823, 27syl 14 . . . . . . . . . . . . . 14  |-  ( ( ( j  e.  Z  /\  ( F `  j
)  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( abs `  ( F `  k )
)  e.  RR )
2924, 18syl 14 . . . . . . . . . . . . . 14  |-  ( ( ( j  e.  Z  /\  ( F `  j
)  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( abs `  ( F `  j )
)  e.  RR )
3028, 29resubcld 8107 . . . . . . . . . . . . 13  |-  ( ( ( j  e.  Z  /\  ( F `  j
)  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( ( abs `  ( F `  k
) )  -  ( abs `  ( F `  j ) ) )  e.  RR )
3123, 24subcld 8037 . . . . . . . . . . . . . 14  |-  ( ( ( j  e.  Z  /\  ( F `  j
)  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( ( F `
 k )  -  ( F `  j ) )  e.  CC )
32 abscl 10774 . . . . . . . . . . . . . 14  |-  ( ( ( F `  k
)  -  ( F `
 j ) )  e.  CC  ->  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  e.  RR )
3331, 32syl 14 . . . . . . . . . . . . 13  |-  ( ( ( j  e.  Z  /\  ( F `  j
)  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  e.  RR )
34 lelttr 7816 . . . . . . . . . . . . . 14  |-  ( ( ( ( abs `  ( F `  k )
)  -  ( abs `  ( F `  j
) ) )  e.  RR  /\  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  e.  RR  /\  1  e.  RR )  ->  ( ( ( ( abs `  ( F `  k )
)  -  ( abs `  ( F `  j
) ) )  <_ 
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  /\  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  1
)  ->  ( ( abs `  ( F `  k ) )  -  ( abs `  ( F `
 j ) ) )  <  1 ) )
3520, 34mp3an3 1287 . . . . . . . . . . . . 13  |-  ( ( ( ( abs `  ( F `  k )
)  -  ( abs `  ( F `  j
) ) )  e.  RR  /\  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  e.  RR )  ->  ( ( ( ( abs `  ( F `  k )
)  -  ( abs `  ( F `  j
) ) )  <_ 
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  /\  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  1
)  ->  ( ( abs `  ( F `  k ) )  -  ( abs `  ( F `
 j ) ) )  <  1 ) )
3630, 33, 35syl2anc 406 . . . . . . . . . . . 12  |-  ( ( ( j  e.  Z  /\  ( F `  j
)  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( ( ( ( abs `  ( F `  k )
)  -  ( abs `  ( F `  j
) ) )  <_ 
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  /\  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  1
)  ->  ( ( abs `  ( F `  k ) )  -  ( abs `  ( F `
 j ) ) )  <  1 ) )
3726, 36mpand 423 . . . . . . . . . . 11  |-  ( ( ( j  e.  Z  /\  ( F `  j
)  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  1  ->  ( ( abs `  ( F `  k )
)  -  ( abs `  ( F `  j
) ) )  <  1 ) )
38 ltsubadd2 8159 . . . . . . . . . . . . 13  |-  ( ( ( abs `  ( F `  k )
)  e.  RR  /\  ( abs `  ( F `
 j ) )  e.  RR  /\  1  e.  RR )  ->  (
( ( abs `  ( F `  k )
)  -  ( abs `  ( F `  j
) ) )  <  1  <->  ( abs `  ( F `  k )
)  <  ( ( abs `  ( F `  j ) )  +  1 ) ) )
3920, 38mp3an3 1287 . . . . . . . . . . . 12  |-  ( ( ( abs `  ( F `  k )
)  e.  RR  /\  ( abs `  ( F `
 j ) )  e.  RR )  -> 
( ( ( abs `  ( F `  k
) )  -  ( abs `  ( F `  j ) ) )  <  1  <->  ( abs `  ( F `  k
) )  <  (
( abs `  ( F `  j )
)  +  1 ) ) )
4028, 29, 39syl2anc 406 . . . . . . . . . . 11  |-  ( ( ( j  e.  Z  /\  ( F `  j
)  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( ( ( abs `  ( F `
 k ) )  -  ( abs `  ( F `  j )
) )  <  1  <->  ( abs `  ( F `
 k ) )  <  ( ( abs `  ( F `  j
) )  +  1 ) ) )
4137, 40sylibd 148 . . . . . . . . . 10  |-  ( ( ( j  e.  Z  /\  ( F `  j
)  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  1  ->  ( abs `  ( F `  k )
)  <  ( ( abs `  ( F `  j ) )  +  1 ) ) )
4241expimpd 358 . . . . . . . . 9  |-  ( ( j  e.  Z  /\  ( F `  j )  e.  CC )  -> 
( ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  1
)  ->  ( abs `  ( F `  k
) )  <  (
( abs `  ( F `  j )
)  +  1 ) ) )
4342ralimdv 2475 . . . . . . . 8  |-  ( ( j  e.  Z  /\  ( F `  j )  e.  CC )  -> 
( A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  1 )  ->  A. k  e.  (
ZZ>= `  j ) ( abs `  ( F `
 k ) )  <  ( ( abs `  ( F `  j
) )  +  1 ) ) )
4443impancom 258 . . . . . . 7  |-  ( ( j  e.  Z  /\  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  1
) )  ->  (
( F `  j
)  e.  CC  ->  A. k  e.  ( ZZ>= `  j ) ( abs `  ( F `  k
) )  <  (
( abs `  ( F `  j )
)  +  1 ) ) )
4517, 44mpd 13 . . . . . 6  |-  ( ( j  e.  Z  /\  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  1
) )  ->  A. k  e.  ( ZZ>= `  j )
( abs `  ( F `  k )
)  <  ( ( abs `  ( F `  j ) )  +  1 ) )
46 breq2 3901 . . . . . . . 8  |-  ( y  =  ( ( abs `  ( F `  j
) )  +  1 )  ->  ( ( abs `  ( F `  k ) )  < 
y  <->  ( abs `  ( F `  k )
)  <  ( ( abs `  ( F `  j ) )  +  1 ) ) )
4746ralbidv 2412 . . . . . . 7  |-  ( y  =  ( ( abs `  ( F `  j
) )  +  1 )  ->  ( A. k  e.  ( ZZ>= `  j ) ( abs `  ( F `  k
) )  <  y  <->  A. k  e.  ( ZZ>= `  j ) ( abs `  ( F `  k
) )  <  (
( abs `  ( F `  j )
)  +  1 ) ) )
4847rspcev 2761 . . . . . 6  |-  ( ( ( ( abs `  ( F `  j )
)  +  1 )  e.  RR  /\  A. k  e.  ( ZZ>= `  j ) ( abs `  ( F `  k
) )  <  (
( abs `  ( F `  j )
)  +  1 ) )  ->  E. y  e.  RR  A. k  e.  ( ZZ>= `  j )
( abs `  ( F `  k )
)  <  y )
4922, 45, 48syl2anc 406 . . . . 5  |-  ( ( j  e.  Z  /\  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  1
) )  ->  E. y  e.  RR  A. k  e.  ( ZZ>= `  j )
( abs `  ( F `  k )
)  <  y )
5049ex 114 . . . 4  |-  ( j  e.  Z  ->  ( A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  1 )  ->  E. y  e.  RR  A. k  e.  ( ZZ>= `  j ) ( abs `  ( F `  k
) )  <  y
) )
5150reximia 2502 . . 3  |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  1
)  ->  E. j  e.  Z  E. y  e.  RR  A. k  e.  ( ZZ>= `  j )
( abs `  ( F `  k )
)  <  y )
52 rexcom 2570 . . 3  |-  ( E. j  e.  Z  E. y  e.  RR  A. k  e.  ( ZZ>= `  j )
( abs `  ( F `  k )
)  <  y  <->  E. y  e.  RR  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  ( F `  k )
)  <  y )
5351, 52sylib 121 . 2  |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  1
)  ->  E. y  e.  RR  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  ( F `  k )
)  <  y )
546, 53syl 14 1  |-  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  ->  E. y  e.  RR  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( F `  k
) )  <  y
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1314    e. wcel 1463   A.wral 2391   E.wrex 2392   class class class wbr 3897   ` cfv 5091  (class class class)co 5740   CCcc 7582   RRcr 7583   1c1 7585    + caddc 7587    < clt 7764    <_ cle 7765    - cmin 7897   ZZcz 9008   ZZ>=cuz 9278   RR+crp 9393   abscabs 10720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4011  ax-sep 4014  ax-nul 4022  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420  ax-iinf 4470  ax-cnex 7675  ax-resscn 7676  ax-1cn 7677  ax-1re 7678  ax-icn 7679  ax-addcl 7680  ax-addrcl 7681  ax-mulcl 7682  ax-mulrcl 7683  ax-addcom 7684  ax-mulcom 7685  ax-addass 7686  ax-mulass 7687  ax-distr 7688  ax-i2m1 7689  ax-0lt1 7690  ax-1rid 7691  ax-0id 7692  ax-rnegex 7693  ax-precex 7694  ax-cnre 7695  ax-pre-ltirr 7696  ax-pre-ltwlin 7697  ax-pre-lttrn 7698  ax-pre-apti 7699  ax-pre-ltadd 7700  ax-pre-mulgt0 7701  ax-pre-mulext 7702  ax-arch 7703  ax-caucvg 7704
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-nel 2379  df-ral 2396  df-rex 2397  df-reu 2398  df-rmo 2399  df-rab 2400  df-v 2660  df-sbc 2881  df-csb 2974  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-nul 3332  df-if 3443  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-int 3740  df-iun 3783  df-br 3898  df-opab 3958  df-mpt 3959  df-tr 3995  df-id 4183  df-po 4186  df-iso 4187  df-iord 4256  df-on 4258  df-ilim 4259  df-suc 4261  df-iom 4473  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-res 4519  df-ima 4520  df-iota 5056  df-fun 5093  df-fn 5094  df-f 5095  df-f1 5096  df-fo 5097  df-f1o 5098  df-fv 5099  df-riota 5696  df-ov 5743  df-oprab 5744  df-mpo 5745  df-1st 6004  df-2nd 6005  df-recs 6168  df-frec 6254  df-pnf 7766  df-mnf 7767  df-xr 7768  df-ltxr 7769  df-le 7770  df-sub 7899  df-neg 7900  df-reap 8300  df-ap 8307  df-div 8396  df-inn 8681  df-2 8739  df-3 8740  df-4 8741  df-n0 8932  df-z 9009  df-uz 9279  df-rp 9394  df-seqfrec 10170  df-exp 10244  df-cj 10565  df-re 10566  df-im 10567  df-rsqrt 10721  df-abs 10722
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator