ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caubnd2 Unicode version

Theorem caubnd2 11059
Description: A Cauchy sequence of complex numbers is eventually bounded. (Contributed by Mario Carneiro, 14-Feb-2014.)
Hypothesis
Ref Expression
cau3.1  |-  Z  =  ( ZZ>= `  M )
Assertion
Ref Expression
caubnd2  |-  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  ->  E. y  e.  RR  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( F `  k
) )  <  y
)
Distinct variable groups:    j, k, x, y, F    j, M, k, x    j, Z, k, x, y
Allowed substitution hint:    M( y)

Proof of Theorem caubnd2
StepHypRef Expression
1 1rp 9593 . . 3  |-  1  e.  RR+
2 breq2 3986 . . . . . 6  |-  ( x  =  1  ->  (
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x  <->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  1
) )
32anbi2d 460 . . . . 5  |-  ( x  =  1  ->  (
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  <-> 
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  1 ) ) )
43rexralbidv 2492 . . . 4  |-  ( x  =  1  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x )  <->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  1 ) ) )
54rspcv 2826 . . 3  |-  ( 1  e.  RR+  ->  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  1 ) ) )
61, 5ax-mp 5 . 2  |-  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  1 ) )
7 eluzelz 9475 . . . . . . . . . . 11  |-  ( j  e.  ( ZZ>= `  M
)  ->  j  e.  ZZ )
8 cau3.1 . . . . . . . . . . 11  |-  Z  =  ( ZZ>= `  M )
97, 8eleq2s 2261 . . . . . . . . . 10  |-  ( j  e.  Z  ->  j  e.  ZZ )
10 uzid 9480 . . . . . . . . . 10  |-  ( j  e.  ZZ  ->  j  e.  ( ZZ>= `  j )
)
119, 10syl 14 . . . . . . . . 9  |-  ( j  e.  Z  ->  j  e.  ( ZZ>= `  j )
)
12 simpl 108 . . . . . . . . . 10  |-  ( ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  1 )  -> 
( F `  k
)  e.  CC )
1312ralimi 2529 . . . . . . . . 9  |-  ( A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  1
)  ->  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  CC )
14 fveq2 5486 . . . . . . . . . . 11  |-  ( k  =  j  ->  ( F `  k )  =  ( F `  j ) )
1514eleq1d 2235 . . . . . . . . . 10  |-  ( k  =  j  ->  (
( F `  k
)  e.  CC  <->  ( F `  j )  e.  CC ) )
1615rspcva 2828 . . . . . . . . 9  |-  ( ( j  e.  ( ZZ>= `  j )  /\  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  CC )  ->  ( F `  j )  e.  CC )
1711, 13, 16syl2an 287 . . . . . . . 8  |-  ( ( j  e.  Z  /\  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  1
) )  ->  ( F `  j )  e.  CC )
18 abscl 10993 . . . . . . . 8  |-  ( ( F `  j )  e.  CC  ->  ( abs `  ( F `  j ) )  e.  RR )
1917, 18syl 14 . . . . . . 7  |-  ( ( j  e.  Z  /\  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  1
) )  ->  ( abs `  ( F `  j ) )  e.  RR )
20 1re 7898 . . . . . . 7  |-  1  e.  RR
21 readdcl 7879 . . . . . . 7  |-  ( ( ( abs `  ( F `  j )
)  e.  RR  /\  1  e.  RR )  ->  ( ( abs `  ( F `  j )
)  +  1 )  e.  RR )
2219, 20, 21sylancl 410 . . . . . 6  |-  ( ( j  e.  Z  /\  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  1
) )  ->  (
( abs `  ( F `  j )
)  +  1 )  e.  RR )
23 simpr 109 . . . . . . . . . . . . 13  |-  ( ( ( j  e.  Z  /\  ( F `  j
)  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( F `  k )  e.  CC )
24 simplr 520 . . . . . . . . . . . . 13  |-  ( ( ( j  e.  Z  /\  ( F `  j
)  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( F `  j )  e.  CC )
25 abs2dif 11048 . . . . . . . . . . . . 13  |-  ( ( ( F `  k
)  e.  CC  /\  ( F `  j )  e.  CC )  -> 
( ( abs `  ( F `  k )
)  -  ( abs `  ( F `  j
) ) )  <_ 
( abs `  (
( F `  k
)  -  ( F `
 j ) ) ) )
2623, 24, 25syl2anc 409 . . . . . . . . . . . 12  |-  ( ( ( j  e.  Z  /\  ( F `  j
)  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( ( abs `  ( F `  k
) )  -  ( abs `  ( F `  j ) ) )  <_  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) ) )
27 abscl 10993 . . . . . . . . . . . . . . 15  |-  ( ( F `  k )  e.  CC  ->  ( abs `  ( F `  k ) )  e.  RR )
2823, 27syl 14 . . . . . . . . . . . . . 14  |-  ( ( ( j  e.  Z  /\  ( F `  j
)  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( abs `  ( F `  k )
)  e.  RR )
2924, 18syl 14 . . . . . . . . . . . . . 14  |-  ( ( ( j  e.  Z  /\  ( F `  j
)  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( abs `  ( F `  j )
)  e.  RR )
3028, 29resubcld 8279 . . . . . . . . . . . . 13  |-  ( ( ( j  e.  Z  /\  ( F `  j
)  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( ( abs `  ( F `  k
) )  -  ( abs `  ( F `  j ) ) )  e.  RR )
3123, 24subcld 8209 . . . . . . . . . . . . . 14  |-  ( ( ( j  e.  Z  /\  ( F `  j
)  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( ( F `
 k )  -  ( F `  j ) )  e.  CC )
32 abscl 10993 . . . . . . . . . . . . . 14  |-  ( ( ( F `  k
)  -  ( F `
 j ) )  e.  CC  ->  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  e.  RR )
3331, 32syl 14 . . . . . . . . . . . . 13  |-  ( ( ( j  e.  Z  /\  ( F `  j
)  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  e.  RR )
34 lelttr 7987 . . . . . . . . . . . . . 14  |-  ( ( ( ( abs `  ( F `  k )
)  -  ( abs `  ( F `  j
) ) )  e.  RR  /\  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  e.  RR  /\  1  e.  RR )  ->  ( ( ( ( abs `  ( F `  k )
)  -  ( abs `  ( F `  j
) ) )  <_ 
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  /\  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  1
)  ->  ( ( abs `  ( F `  k ) )  -  ( abs `  ( F `
 j ) ) )  <  1 ) )
3520, 34mp3an3 1316 . . . . . . . . . . . . 13  |-  ( ( ( ( abs `  ( F `  k )
)  -  ( abs `  ( F `  j
) ) )  e.  RR  /\  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  e.  RR )  ->  ( ( ( ( abs `  ( F `  k )
)  -  ( abs `  ( F `  j
) ) )  <_ 
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  /\  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  1
)  ->  ( ( abs `  ( F `  k ) )  -  ( abs `  ( F `
 j ) ) )  <  1 ) )
3630, 33, 35syl2anc 409 . . . . . . . . . . . 12  |-  ( ( ( j  e.  Z  /\  ( F `  j
)  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( ( ( ( abs `  ( F `  k )
)  -  ( abs `  ( F `  j
) ) )  <_ 
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  /\  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  1
)  ->  ( ( abs `  ( F `  k ) )  -  ( abs `  ( F `
 j ) ) )  <  1 ) )
3726, 36mpand 426 . . . . . . . . . . 11  |-  ( ( ( j  e.  Z  /\  ( F `  j
)  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  1  ->  ( ( abs `  ( F `  k )
)  -  ( abs `  ( F `  j
) ) )  <  1 ) )
38 ltsubadd2 8331 . . . . . . . . . . . . 13  |-  ( ( ( abs `  ( F `  k )
)  e.  RR  /\  ( abs `  ( F `
 j ) )  e.  RR  /\  1  e.  RR )  ->  (
( ( abs `  ( F `  k )
)  -  ( abs `  ( F `  j
) ) )  <  1  <->  ( abs `  ( F `  k )
)  <  ( ( abs `  ( F `  j ) )  +  1 ) ) )
3920, 38mp3an3 1316 . . . . . . . . . . . 12  |-  ( ( ( abs `  ( F `  k )
)  e.  RR  /\  ( abs `  ( F `
 j ) )  e.  RR )  -> 
( ( ( abs `  ( F `  k
) )  -  ( abs `  ( F `  j ) ) )  <  1  <->  ( abs `  ( F `  k
) )  <  (
( abs `  ( F `  j )
)  +  1 ) ) )
4028, 29, 39syl2anc 409 . . . . . . . . . . 11  |-  ( ( ( j  e.  Z  /\  ( F `  j
)  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( ( ( abs `  ( F `
 k ) )  -  ( abs `  ( F `  j )
) )  <  1  <->  ( abs `  ( F `
 k ) )  <  ( ( abs `  ( F `  j
) )  +  1 ) ) )
4137, 40sylibd 148 . . . . . . . . . 10  |-  ( ( ( j  e.  Z  /\  ( F `  j
)  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  1  ->  ( abs `  ( F `  k )
)  <  ( ( abs `  ( F `  j ) )  +  1 ) ) )
4241expimpd 361 . . . . . . . . 9  |-  ( ( j  e.  Z  /\  ( F `  j )  e.  CC )  -> 
( ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  1
)  ->  ( abs `  ( F `  k
) )  <  (
( abs `  ( F `  j )
)  +  1 ) ) )
4342ralimdv 2534 . . . . . . . 8  |-  ( ( j  e.  Z  /\  ( F `  j )  e.  CC )  -> 
( A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  1 )  ->  A. k  e.  (
ZZ>= `  j ) ( abs `  ( F `
 k ) )  <  ( ( abs `  ( F `  j
) )  +  1 ) ) )
4443impancom 258 . . . . . . 7  |-  ( ( j  e.  Z  /\  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  1
) )  ->  (
( F `  j
)  e.  CC  ->  A. k  e.  ( ZZ>= `  j ) ( abs `  ( F `  k
) )  <  (
( abs `  ( F `  j )
)  +  1 ) ) )
4517, 44mpd 13 . . . . . 6  |-  ( ( j  e.  Z  /\  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  1
) )  ->  A. k  e.  ( ZZ>= `  j )
( abs `  ( F `  k )
)  <  ( ( abs `  ( F `  j ) )  +  1 ) )
46 breq2 3986 . . . . . . . 8  |-  ( y  =  ( ( abs `  ( F `  j
) )  +  1 )  ->  ( ( abs `  ( F `  k ) )  < 
y  <->  ( abs `  ( F `  k )
)  <  ( ( abs `  ( F `  j ) )  +  1 ) ) )
4746ralbidv 2466 . . . . . . 7  |-  ( y  =  ( ( abs `  ( F `  j
) )  +  1 )  ->  ( A. k  e.  ( ZZ>= `  j ) ( abs `  ( F `  k
) )  <  y  <->  A. k  e.  ( ZZ>= `  j ) ( abs `  ( F `  k
) )  <  (
( abs `  ( F `  j )
)  +  1 ) ) )
4847rspcev 2830 . . . . . 6  |-  ( ( ( ( abs `  ( F `  j )
)  +  1 )  e.  RR  /\  A. k  e.  ( ZZ>= `  j ) ( abs `  ( F `  k
) )  <  (
( abs `  ( F `  j )
)  +  1 ) )  ->  E. y  e.  RR  A. k  e.  ( ZZ>= `  j )
( abs `  ( F `  k )
)  <  y )
4922, 45, 48syl2anc 409 . . . . 5  |-  ( ( j  e.  Z  /\  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  1
) )  ->  E. y  e.  RR  A. k  e.  ( ZZ>= `  j )
( abs `  ( F `  k )
)  <  y )
5049ex 114 . . . 4  |-  ( j  e.  Z  ->  ( A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  1 )  ->  E. y  e.  RR  A. k  e.  ( ZZ>= `  j ) ( abs `  ( F `  k
) )  <  y
) )
5150reximia 2561 . . 3  |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  1
)  ->  E. j  e.  Z  E. y  e.  RR  A. k  e.  ( ZZ>= `  j )
( abs `  ( F `  k )
)  <  y )
52 rexcom 2630 . . 3  |-  ( E. j  e.  Z  E. y  e.  RR  A. k  e.  ( ZZ>= `  j )
( abs `  ( F `  k )
)  <  y  <->  E. y  e.  RR  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  ( F `  k )
)  <  y )
5351, 52sylib 121 . 2  |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  1
)  ->  E. y  e.  RR  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  ( F `  k )
)  <  y )
546, 53syl 14 1  |-  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  ->  E. y  e.  RR  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( F `  k
) )  <  y
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136   A.wral 2444   E.wrex 2445   class class class wbr 3982   ` cfv 5188  (class class class)co 5842   CCcc 7751   RRcr 7752   1c1 7754    + caddc 7756    < clt 7933    <_ cle 7934    - cmin 8069   ZZcz 9191   ZZ>=cuz 9466   RR+crp 9589   abscabs 10939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-rp 9590  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator