ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caubnd2 Unicode version

Theorem caubnd2 11126
Description: A Cauchy sequence of complex numbers is eventually bounded. (Contributed by Mario Carneiro, 14-Feb-2014.)
Hypothesis
Ref Expression
cau3.1  |-  Z  =  ( ZZ>= `  M )
Assertion
Ref Expression
caubnd2  |-  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  ->  E. y  e.  RR  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( F `  k
) )  <  y
)
Distinct variable groups:    j, k, x, y, F    j, M, k, x    j, Z, k, x, y
Allowed substitution hint:    M( y)

Proof of Theorem caubnd2
StepHypRef Expression
1 1rp 9657 . . 3  |-  1  e.  RR+
2 breq2 4008 . . . . . 6  |-  ( x  =  1  ->  (
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x  <->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  1
) )
32anbi2d 464 . . . . 5  |-  ( x  =  1  ->  (
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  <-> 
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  1 ) ) )
43rexralbidv 2503 . . . 4  |-  ( x  =  1  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x )  <->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  1 ) ) )
54rspcv 2838 . . 3  |-  ( 1  e.  RR+  ->  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  1 ) ) )
61, 5ax-mp 5 . 2  |-  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  1 ) )
7 eluzelz 9537 . . . . . . . . . . 11  |-  ( j  e.  ( ZZ>= `  M
)  ->  j  e.  ZZ )
8 cau3.1 . . . . . . . . . . 11  |-  Z  =  ( ZZ>= `  M )
97, 8eleq2s 2272 . . . . . . . . . 10  |-  ( j  e.  Z  ->  j  e.  ZZ )
10 uzid 9542 . . . . . . . . . 10  |-  ( j  e.  ZZ  ->  j  e.  ( ZZ>= `  j )
)
119, 10syl 14 . . . . . . . . 9  |-  ( j  e.  Z  ->  j  e.  ( ZZ>= `  j )
)
12 simpl 109 . . . . . . . . . 10  |-  ( ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  1 )  -> 
( F `  k
)  e.  CC )
1312ralimi 2540 . . . . . . . . 9  |-  ( A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  1
)  ->  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  CC )
14 fveq2 5516 . . . . . . . . . . 11  |-  ( k  =  j  ->  ( F `  k )  =  ( F `  j ) )
1514eleq1d 2246 . . . . . . . . . 10  |-  ( k  =  j  ->  (
( F `  k
)  e.  CC  <->  ( F `  j )  e.  CC ) )
1615rspcva 2840 . . . . . . . . 9  |-  ( ( j  e.  ( ZZ>= `  j )  /\  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  CC )  ->  ( F `  j )  e.  CC )
1711, 13, 16syl2an 289 . . . . . . . 8  |-  ( ( j  e.  Z  /\  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  1
) )  ->  ( F `  j )  e.  CC )
18 abscl 11060 . . . . . . . 8  |-  ( ( F `  j )  e.  CC  ->  ( abs `  ( F `  j ) )  e.  RR )
1917, 18syl 14 . . . . . . 7  |-  ( ( j  e.  Z  /\  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  1
) )  ->  ( abs `  ( F `  j ) )  e.  RR )
20 1re 7956 . . . . . . 7  |-  1  e.  RR
21 readdcl 7937 . . . . . . 7  |-  ( ( ( abs `  ( F `  j )
)  e.  RR  /\  1  e.  RR )  ->  ( ( abs `  ( F `  j )
)  +  1 )  e.  RR )
2219, 20, 21sylancl 413 . . . . . 6  |-  ( ( j  e.  Z  /\  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  1
) )  ->  (
( abs `  ( F `  j )
)  +  1 )  e.  RR )
23 simpr 110 . . . . . . . . . . . . 13  |-  ( ( ( j  e.  Z  /\  ( F `  j
)  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( F `  k )  e.  CC )
24 simplr 528 . . . . . . . . . . . . 13  |-  ( ( ( j  e.  Z  /\  ( F `  j
)  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( F `  j )  e.  CC )
25 abs2dif 11115 . . . . . . . . . . . . 13  |-  ( ( ( F `  k
)  e.  CC  /\  ( F `  j )  e.  CC )  -> 
( ( abs `  ( F `  k )
)  -  ( abs `  ( F `  j
) ) )  <_ 
( abs `  (
( F `  k
)  -  ( F `
 j ) ) ) )
2623, 24, 25syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( j  e.  Z  /\  ( F `  j
)  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( ( abs `  ( F `  k
) )  -  ( abs `  ( F `  j ) ) )  <_  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) ) )
27 abscl 11060 . . . . . . . . . . . . . . 15  |-  ( ( F `  k )  e.  CC  ->  ( abs `  ( F `  k ) )  e.  RR )
2823, 27syl 14 . . . . . . . . . . . . . 14  |-  ( ( ( j  e.  Z  /\  ( F `  j
)  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( abs `  ( F `  k )
)  e.  RR )
2924, 18syl 14 . . . . . . . . . . . . . 14  |-  ( ( ( j  e.  Z  /\  ( F `  j
)  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( abs `  ( F `  j )
)  e.  RR )
3028, 29resubcld 8338 . . . . . . . . . . . . 13  |-  ( ( ( j  e.  Z  /\  ( F `  j
)  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( ( abs `  ( F `  k
) )  -  ( abs `  ( F `  j ) ) )  e.  RR )
3123, 24subcld 8268 . . . . . . . . . . . . . 14  |-  ( ( ( j  e.  Z  /\  ( F `  j
)  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( ( F `
 k )  -  ( F `  j ) )  e.  CC )
32 abscl 11060 . . . . . . . . . . . . . 14  |-  ( ( ( F `  k
)  -  ( F `
 j ) )  e.  CC  ->  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  e.  RR )
3331, 32syl 14 . . . . . . . . . . . . 13  |-  ( ( ( j  e.  Z  /\  ( F `  j
)  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  e.  RR )
34 lelttr 8046 . . . . . . . . . . . . . 14  |-  ( ( ( ( abs `  ( F `  k )
)  -  ( abs `  ( F `  j
) ) )  e.  RR  /\  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  e.  RR  /\  1  e.  RR )  ->  ( ( ( ( abs `  ( F `  k )
)  -  ( abs `  ( F `  j
) ) )  <_ 
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  /\  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  1
)  ->  ( ( abs `  ( F `  k ) )  -  ( abs `  ( F `
 j ) ) )  <  1 ) )
3520, 34mp3an3 1326 . . . . . . . . . . . . 13  |-  ( ( ( ( abs `  ( F `  k )
)  -  ( abs `  ( F `  j
) ) )  e.  RR  /\  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  e.  RR )  ->  ( ( ( ( abs `  ( F `  k )
)  -  ( abs `  ( F `  j
) ) )  <_ 
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  /\  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  1
)  ->  ( ( abs `  ( F `  k ) )  -  ( abs `  ( F `
 j ) ) )  <  1 ) )
3630, 33, 35syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( j  e.  Z  /\  ( F `  j
)  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( ( ( ( abs `  ( F `  k )
)  -  ( abs `  ( F `  j
) ) )  <_ 
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  /\  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  1
)  ->  ( ( abs `  ( F `  k ) )  -  ( abs `  ( F `
 j ) ) )  <  1 ) )
3726, 36mpand 429 . . . . . . . . . . 11  |-  ( ( ( j  e.  Z  /\  ( F `  j
)  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  1  ->  ( ( abs `  ( F `  k )
)  -  ( abs `  ( F `  j
) ) )  <  1 ) )
38 ltsubadd2 8390 . . . . . . . . . . . . 13  |-  ( ( ( abs `  ( F `  k )
)  e.  RR  /\  ( abs `  ( F `
 j ) )  e.  RR  /\  1  e.  RR )  ->  (
( ( abs `  ( F `  k )
)  -  ( abs `  ( F `  j
) ) )  <  1  <->  ( abs `  ( F `  k )
)  <  ( ( abs `  ( F `  j ) )  +  1 ) ) )
3920, 38mp3an3 1326 . . . . . . . . . . . 12  |-  ( ( ( abs `  ( F `  k )
)  e.  RR  /\  ( abs `  ( F `
 j ) )  e.  RR )  -> 
( ( ( abs `  ( F `  k
) )  -  ( abs `  ( F `  j ) ) )  <  1  <->  ( abs `  ( F `  k
) )  <  (
( abs `  ( F `  j )
)  +  1 ) ) )
4028, 29, 39syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( j  e.  Z  /\  ( F `  j
)  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( ( ( abs `  ( F `
 k ) )  -  ( abs `  ( F `  j )
) )  <  1  <->  ( abs `  ( F `
 k ) )  <  ( ( abs `  ( F `  j
) )  +  1 ) ) )
4137, 40sylibd 149 . . . . . . . . . 10  |-  ( ( ( j  e.  Z  /\  ( F `  j
)  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  1  ->  ( abs `  ( F `  k )
)  <  ( ( abs `  ( F `  j ) )  +  1 ) ) )
4241expimpd 363 . . . . . . . . 9  |-  ( ( j  e.  Z  /\  ( F `  j )  e.  CC )  -> 
( ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  1
)  ->  ( abs `  ( F `  k
) )  <  (
( abs `  ( F `  j )
)  +  1 ) ) )
4342ralimdv 2545 . . . . . . . 8  |-  ( ( j  e.  Z  /\  ( F `  j )  e.  CC )  -> 
( A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  1 )  ->  A. k  e.  (
ZZ>= `  j ) ( abs `  ( F `
 k ) )  <  ( ( abs `  ( F `  j
) )  +  1 ) ) )
4443impancom 260 . . . . . . 7  |-  ( ( j  e.  Z  /\  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  1
) )  ->  (
( F `  j
)  e.  CC  ->  A. k  e.  ( ZZ>= `  j ) ( abs `  ( F `  k
) )  <  (
( abs `  ( F `  j )
)  +  1 ) ) )
4517, 44mpd 13 . . . . . 6  |-  ( ( j  e.  Z  /\  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  1
) )  ->  A. k  e.  ( ZZ>= `  j )
( abs `  ( F `  k )
)  <  ( ( abs `  ( F `  j ) )  +  1 ) )
46 breq2 4008 . . . . . . . 8  |-  ( y  =  ( ( abs `  ( F `  j
) )  +  1 )  ->  ( ( abs `  ( F `  k ) )  < 
y  <->  ( abs `  ( F `  k )
)  <  ( ( abs `  ( F `  j ) )  +  1 ) ) )
4746ralbidv 2477 . . . . . . 7  |-  ( y  =  ( ( abs `  ( F `  j
) )  +  1 )  ->  ( A. k  e.  ( ZZ>= `  j ) ( abs `  ( F `  k
) )  <  y  <->  A. k  e.  ( ZZ>= `  j ) ( abs `  ( F `  k
) )  <  (
( abs `  ( F `  j )
)  +  1 ) ) )
4847rspcev 2842 . . . . . 6  |-  ( ( ( ( abs `  ( F `  j )
)  +  1 )  e.  RR  /\  A. k  e.  ( ZZ>= `  j ) ( abs `  ( F `  k
) )  <  (
( abs `  ( F `  j )
)  +  1 ) )  ->  E. y  e.  RR  A. k  e.  ( ZZ>= `  j )
( abs `  ( F `  k )
)  <  y )
4922, 45, 48syl2anc 411 . . . . 5  |-  ( ( j  e.  Z  /\  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  1
) )  ->  E. y  e.  RR  A. k  e.  ( ZZ>= `  j )
( abs `  ( F `  k )
)  <  y )
5049ex 115 . . . 4  |-  ( j  e.  Z  ->  ( A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  1 )  ->  E. y  e.  RR  A. k  e.  ( ZZ>= `  j ) ( abs `  ( F `  k
) )  <  y
) )
5150reximia 2572 . . 3  |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  1
)  ->  E. j  e.  Z  E. y  e.  RR  A. k  e.  ( ZZ>= `  j )
( abs `  ( F `  k )
)  <  y )
52 rexcom 2641 . . 3  |-  ( E. j  e.  Z  E. y  e.  RR  A. k  e.  ( ZZ>= `  j )
( abs `  ( F `  k )
)  <  y  <->  E. y  e.  RR  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  ( F `  k )
)  <  y )
5351, 52sylib 122 . 2  |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  1
)  ->  E. y  e.  RR  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  ( F `  k )
)  <  y )
546, 53syl 14 1  |-  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  ->  E. y  e.  RR  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( F `  k
) )  <  y
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   A.wral 2455   E.wrex 2456   class class class wbr 4004   ` cfv 5217  (class class class)co 5875   CCcc 7809   RRcr 7810   1c1 7812    + caddc 7814    < clt 7992    <_ cle 7993    - cmin 8128   ZZcz 9253   ZZ>=cuz 9528   RR+crp 9653   abscabs 11006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-mulrcl 7910  ax-addcom 7911  ax-mulcom 7912  ax-addass 7913  ax-mulass 7914  ax-distr 7915  ax-i2m1 7916  ax-0lt1 7917  ax-1rid 7918  ax-0id 7919  ax-rnegex 7920  ax-precex 7921  ax-cnre 7922  ax-pre-ltirr 7923  ax-pre-ltwlin 7924  ax-pre-lttrn 7925  ax-pre-apti 7926  ax-pre-ltadd 7927  ax-pre-mulgt0 7928  ax-pre-mulext 7929  ax-arch 7930  ax-caucvg 7931
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-if 3536  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-id 4294  df-po 4297  df-iso 4298  df-iord 4367  df-on 4369  df-ilim 4370  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-recs 6306  df-frec 6392  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-sub 8130  df-neg 8131  df-reap 8532  df-ap 8539  df-div 8630  df-inn 8920  df-2 8978  df-3 8979  df-4 8980  df-n0 9177  df-z 9254  df-uz 9529  df-rp 9654  df-seqfrec 10446  df-exp 10520  df-cj 10851  df-re 10852  df-im 10853  df-rsqrt 11007  df-abs 11008
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator