ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addcomprg Unicode version

Theorem addcomprg 7698
Description: Addition of positive reals is commutative. Proposition 9-3.5(ii) of [Gleason] p. 123. (Contributed by Jim Kingdon, 11-Dec-2019.)
Assertion
Ref Expression
addcomprg  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  +P.  B
)  =  ( B  +P.  A ) )

Proof of Theorem addcomprg
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prop 7595 . . . . . . . . 9  |-  ( B  e.  P.  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
2 elprnql 7601 . . . . . . . . 9  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  y  e.  ( 1st `  B ) )  -> 
y  e.  Q. )
31, 2sylan 283 . . . . . . . 8  |-  ( ( B  e.  P.  /\  y  e.  ( 1st `  B ) )  -> 
y  e.  Q. )
4 prop 7595 . . . . . . . . . . . . 13  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
5 elprnql 7601 . . . . . . . . . . . . 13  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  z  e.  ( 1st `  A ) )  -> 
z  e.  Q. )
64, 5sylan 283 . . . . . . . . . . . 12  |-  ( ( A  e.  P.  /\  z  e.  ( 1st `  A ) )  -> 
z  e.  Q. )
7 addcomnqg 7501 . . . . . . . . . . . . 13  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y  +Q  z
)  =  ( z  +Q  y ) )
87eqeq2d 2218 . . . . . . . . . . . 12  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( x  =  ( y  +Q  z )  <-> 
x  =  ( z  +Q  y ) ) )
96, 8sylan2 286 . . . . . . . . . . 11  |-  ( ( y  e.  Q.  /\  ( A  e.  P.  /\  z  e.  ( 1st `  A ) ) )  ->  ( x  =  ( y  +Q  z
)  <->  x  =  (
z  +Q  y ) ) )
109anassrs 400 . . . . . . . . . 10  |-  ( ( ( y  e.  Q.  /\  A  e.  P. )  /\  z  e.  ( 1st `  A ) )  ->  ( x  =  ( y  +Q  z
)  <->  x  =  (
z  +Q  y ) ) )
1110rexbidva 2504 . . . . . . . . 9  |-  ( ( y  e.  Q.  /\  A  e.  P. )  ->  ( E. z  e.  ( 1st `  A
) x  =  ( y  +Q  z )  <->  E. z  e.  ( 1st `  A ) x  =  ( z  +Q  y ) ) )
1211ancoms 268 . . . . . . . 8  |-  ( ( A  e.  P.  /\  y  e.  Q. )  ->  ( E. z  e.  ( 1st `  A
) x  =  ( y  +Q  z )  <->  E. z  e.  ( 1st `  A ) x  =  ( z  +Q  y ) ) )
133, 12sylan2 286 . . . . . . 7  |-  ( ( A  e.  P.  /\  ( B  e.  P.  /\  y  e.  ( 1st `  B ) ) )  ->  ( E. z  e.  ( 1st `  A
) x  =  ( y  +Q  z )  <->  E. z  e.  ( 1st `  A ) x  =  ( z  +Q  y ) ) )
1413anassrs 400 . . . . . 6  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  y  e.  ( 1st `  B ) )  ->  ( E. z  e.  ( 1st `  A
) x  =  ( y  +Q  z )  <->  E. z  e.  ( 1st `  A ) x  =  ( z  +Q  y ) ) )
1514rexbidva 2504 . . . . 5  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( E. y  e.  ( 1st `  B
) E. z  e.  ( 1st `  A
) x  =  ( y  +Q  z )  <->  E. y  e.  ( 1st `  B ) E. z  e.  ( 1st `  A ) x  =  ( z  +Q  y
) ) )
16 rexcom 2671 . . . . 5  |-  ( E. y  e.  ( 1st `  B ) E. z  e.  ( 1st `  A
) x  =  ( z  +Q  y )  <->  E. z  e.  ( 1st `  A ) E. y  e.  ( 1st `  B ) x  =  ( z  +Q  y
) )
1715, 16bitrdi 196 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( E. y  e.  ( 1st `  B
) E. z  e.  ( 1st `  A
) x  =  ( y  +Q  z )  <->  E. z  e.  ( 1st `  A ) E. y  e.  ( 1st `  B ) x  =  ( z  +Q  y
) ) )
1817rabbidv 2762 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  { x  e.  Q.  |  E. y  e.  ( 1st `  B ) E. z  e.  ( 1st `  A ) x  =  ( y  +Q  z ) }  =  { x  e. 
Q.  |  E. z  e.  ( 1st `  A
) E. y  e.  ( 1st `  B
) x  =  ( z  +Q  y ) } )
19 elprnqu 7602 . . . . . . . . 9  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  y  e.  ( 2nd `  B ) )  -> 
y  e.  Q. )
201, 19sylan 283 . . . . . . . 8  |-  ( ( B  e.  P.  /\  y  e.  ( 2nd `  B ) )  -> 
y  e.  Q. )
21 elprnqu 7602 . . . . . . . . . . . . 13  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  z  e.  ( 2nd `  A ) )  -> 
z  e.  Q. )
224, 21sylan 283 . . . . . . . . . . . 12  |-  ( ( A  e.  P.  /\  z  e.  ( 2nd `  A ) )  -> 
z  e.  Q. )
2322, 8sylan2 286 . . . . . . . . . . 11  |-  ( ( y  e.  Q.  /\  ( A  e.  P.  /\  z  e.  ( 2nd `  A ) ) )  ->  ( x  =  ( y  +Q  z
)  <->  x  =  (
z  +Q  y ) ) )
2423anassrs 400 . . . . . . . . . 10  |-  ( ( ( y  e.  Q.  /\  A  e.  P. )  /\  z  e.  ( 2nd `  A ) )  ->  ( x  =  ( y  +Q  z
)  <->  x  =  (
z  +Q  y ) ) )
2524rexbidva 2504 . . . . . . . . 9  |-  ( ( y  e.  Q.  /\  A  e.  P. )  ->  ( E. z  e.  ( 2nd `  A
) x  =  ( y  +Q  z )  <->  E. z  e.  ( 2nd `  A ) x  =  ( z  +Q  y ) ) )
2625ancoms 268 . . . . . . . 8  |-  ( ( A  e.  P.  /\  y  e.  Q. )  ->  ( E. z  e.  ( 2nd `  A
) x  =  ( y  +Q  z )  <->  E. z  e.  ( 2nd `  A ) x  =  ( z  +Q  y ) ) )
2720, 26sylan2 286 . . . . . . 7  |-  ( ( A  e.  P.  /\  ( B  e.  P.  /\  y  e.  ( 2nd `  B ) ) )  ->  ( E. z  e.  ( 2nd `  A
) x  =  ( y  +Q  z )  <->  E. z  e.  ( 2nd `  A ) x  =  ( z  +Q  y ) ) )
2827anassrs 400 . . . . . 6  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  y  e.  ( 2nd `  B ) )  ->  ( E. z  e.  ( 2nd `  A
) x  =  ( y  +Q  z )  <->  E. z  e.  ( 2nd `  A ) x  =  ( z  +Q  y ) ) )
2928rexbidva 2504 . . . . 5  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( E. y  e.  ( 2nd `  B
) E. z  e.  ( 2nd `  A
) x  =  ( y  +Q  z )  <->  E. y  e.  ( 2nd `  B ) E. z  e.  ( 2nd `  A ) x  =  ( z  +Q  y
) ) )
30 rexcom 2671 . . . . 5  |-  ( E. y  e.  ( 2nd `  B ) E. z  e.  ( 2nd `  A
) x  =  ( z  +Q  y )  <->  E. z  e.  ( 2nd `  A ) E. y  e.  ( 2nd `  B ) x  =  ( z  +Q  y
) )
3129, 30bitrdi 196 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( E. y  e.  ( 2nd `  B
) E. z  e.  ( 2nd `  A
) x  =  ( y  +Q  z )  <->  E. z  e.  ( 2nd `  A ) E. y  e.  ( 2nd `  B ) x  =  ( z  +Q  y
) ) )
3231rabbidv 2762 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  { x  e.  Q.  |  E. y  e.  ( 2nd `  B ) E. z  e.  ( 2nd `  A ) x  =  ( y  +Q  z ) }  =  { x  e. 
Q.  |  E. z  e.  ( 2nd `  A
) E. y  e.  ( 2nd `  B
) x  =  ( z  +Q  y ) } )
3318, 32opeq12d 3829 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  -> 
<. { x  e.  Q.  |  E. y  e.  ( 1st `  B ) E. z  e.  ( 1st `  A ) x  =  ( y  +Q  z ) } ,  { x  e. 
Q.  |  E. y  e.  ( 2nd `  B
) E. z  e.  ( 2nd `  A
) x  =  ( y  +Q  z ) } >.  =  <. { x  e.  Q.  |  E. z  e.  ( 1st `  A ) E. y  e.  ( 1st `  B ) x  =  ( z  +Q  y
) } ,  {
x  e.  Q.  |  E. z  e.  ( 2nd `  A ) E. y  e.  ( 2nd `  B ) x  =  ( z  +Q  y
) } >. )
34 plpvlu 7658 . . 3  |-  ( ( B  e.  P.  /\  A  e.  P. )  ->  ( B  +P.  A
)  =  <. { x  e.  Q.  |  E. y  e.  ( 1st `  B
) E. z  e.  ( 1st `  A
) x  =  ( y  +Q  z ) } ,  { x  e.  Q.  |  E. y  e.  ( 2nd `  B
) E. z  e.  ( 2nd `  A
) x  =  ( y  +Q  z ) } >. )
3534ancoms 268 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( B  +P.  A
)  =  <. { x  e.  Q.  |  E. y  e.  ( 1st `  B
) E. z  e.  ( 1st `  A
) x  =  ( y  +Q  z ) } ,  { x  e.  Q.  |  E. y  e.  ( 2nd `  B
) E. z  e.  ( 2nd `  A
) x  =  ( y  +Q  z ) } >. )
36 plpvlu 7658 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  +P.  B
)  =  <. { x  e.  Q.  |  E. z  e.  ( 1st `  A
) E. y  e.  ( 1st `  B
) x  =  ( z  +Q  y ) } ,  { x  e.  Q.  |  E. z  e.  ( 2nd `  A
) E. y  e.  ( 2nd `  B
) x  =  ( z  +Q  y ) } >. )
3733, 35, 363eqtr4rd 2250 1  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  +P.  B
)  =  ( B  +P.  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2177   E.wrex 2486   {crab 2489   <.cop 3637   ` cfv 5276  (class class class)co 5951   1stc1st 6231   2ndc2nd 6232   Q.cnq 7400    +Q cplq 7402   P.cnp 7411    +P. cpp 7413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-iord 4417  df-on 4419  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-irdg 6463  df-oadd 6513  df-omul 6514  df-er 6627  df-ec 6629  df-qs 6633  df-ni 7424  df-pli 7425  df-mi 7426  df-plpq 7464  df-enq 7467  df-nqqs 7468  df-plqqs 7469  df-inp 7586  df-iplp 7588
This theorem is referenced by:  prplnqu  7740  addextpr  7741  caucvgprlemcanl  7764  caucvgprprlemnkltj  7809  caucvgprprlemnbj  7813  caucvgprprlemmu  7815  caucvgprprlemloc  7823  caucvgprprlemexbt  7826  caucvgprprlemexb  7827  caucvgprprlemaddq  7828  enrer  7855  addcmpblnr  7859  mulcmpblnrlemg  7860  ltsrprg  7867  addcomsrg  7875  mulcomsrg  7877  mulasssrg  7878  distrsrg  7879  lttrsr  7882  ltposr  7883  ltsosr  7884  0lt1sr  7885  0idsr  7887  1idsr  7888  ltasrg  7890  recexgt0sr  7893  mulgt0sr  7898  aptisr  7899  mulextsr1lem  7900  archsr  7902  srpospr  7903  prsrpos  7905  prsradd  7906  prsrlt  7907  ltpsrprg  7923  map2psrprg  7925  pitonnlem1p1  7966  pitoregt0  7969  recidpirqlemcalc  7977
  Copyright terms: Public domain W3C validator