| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > addcomprg | Unicode version | ||
| Description: Addition of positive reals is commutative. Proposition 9-3.5(ii) of [Gleason] p. 123. (Contributed by Jim Kingdon, 11-Dec-2019.) | 
| Ref | Expression | 
|---|---|
| addcomprg | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | prop 7542 | 
. . . . . . . . 9
 | |
| 2 | elprnql 7548 | 
. . . . . . . . 9
 | |
| 3 | 1, 2 | sylan 283 | 
. . . . . . . 8
 | 
| 4 | prop 7542 | 
. . . . . . . . . . . . 13
 | |
| 5 | elprnql 7548 | 
. . . . . . . . . . . . 13
 | |
| 6 | 4, 5 | sylan 283 | 
. . . . . . . . . . . 12
 | 
| 7 | addcomnqg 7448 | 
. . . . . . . . . . . . 13
 | |
| 8 | 7 | eqeq2d 2208 | 
. . . . . . . . . . . 12
 | 
| 9 | 6, 8 | sylan2 286 | 
. . . . . . . . . . 11
 | 
| 10 | 9 | anassrs 400 | 
. . . . . . . . . 10
 | 
| 11 | 10 | rexbidva 2494 | 
. . . . . . . . 9
 | 
| 12 | 11 | ancoms 268 | 
. . . . . . . 8
 | 
| 13 | 3, 12 | sylan2 286 | 
. . . . . . 7
 | 
| 14 | 13 | anassrs 400 | 
. . . . . 6
 | 
| 15 | 14 | rexbidva 2494 | 
. . . . 5
 | 
| 16 | rexcom 2661 | 
. . . . 5
 | |
| 17 | 15, 16 | bitrdi 196 | 
. . . 4
 | 
| 18 | 17 | rabbidv 2752 | 
. . 3
 | 
| 19 | elprnqu 7549 | 
. . . . . . . . 9
 | |
| 20 | 1, 19 | sylan 283 | 
. . . . . . . 8
 | 
| 21 | elprnqu 7549 | 
. . . . . . . . . . . . 13
 | |
| 22 | 4, 21 | sylan 283 | 
. . . . . . . . . . . 12
 | 
| 23 | 22, 8 | sylan2 286 | 
. . . . . . . . . . 11
 | 
| 24 | 23 | anassrs 400 | 
. . . . . . . . . 10
 | 
| 25 | 24 | rexbidva 2494 | 
. . . . . . . . 9
 | 
| 26 | 25 | ancoms 268 | 
. . . . . . . 8
 | 
| 27 | 20, 26 | sylan2 286 | 
. . . . . . 7
 | 
| 28 | 27 | anassrs 400 | 
. . . . . 6
 | 
| 29 | 28 | rexbidva 2494 | 
. . . . 5
 | 
| 30 | rexcom 2661 | 
. . . . 5
 | |
| 31 | 29, 30 | bitrdi 196 | 
. . . 4
 | 
| 32 | 31 | rabbidv 2752 | 
. . 3
 | 
| 33 | 18, 32 | opeq12d 3816 | 
. 2
 | 
| 34 | plpvlu 7605 | 
. . 3
 | |
| 35 | 34 | ancoms 268 | 
. 2
 | 
| 36 | plpvlu 7605 | 
. 2
 | |
| 37 | 33, 35, 36 | 3eqtr4rd 2240 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-irdg 6428 df-oadd 6478 df-omul 6479 df-er 6592 df-ec 6594 df-qs 6598 df-ni 7371 df-pli 7372 df-mi 7373 df-plpq 7411 df-enq 7414 df-nqqs 7415 df-plqqs 7416 df-inp 7533 df-iplp 7535 | 
| This theorem is referenced by: prplnqu 7687 addextpr 7688 caucvgprlemcanl 7711 caucvgprprlemnkltj 7756 caucvgprprlemnbj 7760 caucvgprprlemmu 7762 caucvgprprlemloc 7770 caucvgprprlemexbt 7773 caucvgprprlemexb 7774 caucvgprprlemaddq 7775 enrer 7802 addcmpblnr 7806 mulcmpblnrlemg 7807 ltsrprg 7814 addcomsrg 7822 mulcomsrg 7824 mulasssrg 7825 distrsrg 7826 lttrsr 7829 ltposr 7830 ltsosr 7831 0lt1sr 7832 0idsr 7834 1idsr 7835 ltasrg 7837 recexgt0sr 7840 mulgt0sr 7845 aptisr 7846 mulextsr1lem 7847 archsr 7849 srpospr 7850 prsrpos 7852 prsradd 7853 prsrlt 7854 ltpsrprg 7870 map2psrprg 7872 pitonnlem1p1 7913 pitoregt0 7916 recidpirqlemcalc 7924 | 
| Copyright terms: Public domain | W3C validator |