| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addcomprg | Unicode version | ||
| Description: Addition of positive reals is commutative. Proposition 9-3.5(ii) of [Gleason] p. 123. (Contributed by Jim Kingdon, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| addcomprg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prop 7670 |
. . . . . . . . 9
| |
| 2 | elprnql 7676 |
. . . . . . . . 9
| |
| 3 | 1, 2 | sylan 283 |
. . . . . . . 8
|
| 4 | prop 7670 |
. . . . . . . . . . . . 13
| |
| 5 | elprnql 7676 |
. . . . . . . . . . . . 13
| |
| 6 | 4, 5 | sylan 283 |
. . . . . . . . . . . 12
|
| 7 | addcomnqg 7576 |
. . . . . . . . . . . . 13
| |
| 8 | 7 | eqeq2d 2241 |
. . . . . . . . . . . 12
|
| 9 | 6, 8 | sylan2 286 |
. . . . . . . . . . 11
|
| 10 | 9 | anassrs 400 |
. . . . . . . . . 10
|
| 11 | 10 | rexbidva 2527 |
. . . . . . . . 9
|
| 12 | 11 | ancoms 268 |
. . . . . . . 8
|
| 13 | 3, 12 | sylan2 286 |
. . . . . . 7
|
| 14 | 13 | anassrs 400 |
. . . . . 6
|
| 15 | 14 | rexbidva 2527 |
. . . . 5
|
| 16 | rexcom 2695 |
. . . . 5
| |
| 17 | 15, 16 | bitrdi 196 |
. . . 4
|
| 18 | 17 | rabbidv 2788 |
. . 3
|
| 19 | elprnqu 7677 |
. . . . . . . . 9
| |
| 20 | 1, 19 | sylan 283 |
. . . . . . . 8
|
| 21 | elprnqu 7677 |
. . . . . . . . . . . . 13
| |
| 22 | 4, 21 | sylan 283 |
. . . . . . . . . . . 12
|
| 23 | 22, 8 | sylan2 286 |
. . . . . . . . . . 11
|
| 24 | 23 | anassrs 400 |
. . . . . . . . . 10
|
| 25 | 24 | rexbidva 2527 |
. . . . . . . . 9
|
| 26 | 25 | ancoms 268 |
. . . . . . . 8
|
| 27 | 20, 26 | sylan2 286 |
. . . . . . 7
|
| 28 | 27 | anassrs 400 |
. . . . . 6
|
| 29 | 28 | rexbidva 2527 |
. . . . 5
|
| 30 | rexcom 2695 |
. . . . 5
| |
| 31 | 29, 30 | bitrdi 196 |
. . . 4
|
| 32 | 31 | rabbidv 2788 |
. . 3
|
| 33 | 18, 32 | opeq12d 3865 |
. 2
|
| 34 | plpvlu 7733 |
. . 3
| |
| 35 | 34 | ancoms 268 |
. 2
|
| 36 | plpvlu 7733 |
. 2
| |
| 37 | 33, 35, 36 | 3eqtr4rd 2273 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-recs 6457 df-irdg 6522 df-oadd 6572 df-omul 6573 df-er 6688 df-ec 6690 df-qs 6694 df-ni 7499 df-pli 7500 df-mi 7501 df-plpq 7539 df-enq 7542 df-nqqs 7543 df-plqqs 7544 df-inp 7661 df-iplp 7663 |
| This theorem is referenced by: prplnqu 7815 addextpr 7816 caucvgprlemcanl 7839 caucvgprprlemnkltj 7884 caucvgprprlemnbj 7888 caucvgprprlemmu 7890 caucvgprprlemloc 7898 caucvgprprlemexbt 7901 caucvgprprlemexb 7902 caucvgprprlemaddq 7903 enrer 7930 addcmpblnr 7934 mulcmpblnrlemg 7935 ltsrprg 7942 addcomsrg 7950 mulcomsrg 7952 mulasssrg 7953 distrsrg 7954 lttrsr 7957 ltposr 7958 ltsosr 7959 0lt1sr 7960 0idsr 7962 1idsr 7963 ltasrg 7965 recexgt0sr 7968 mulgt0sr 7973 aptisr 7974 mulextsr1lem 7975 archsr 7977 srpospr 7978 prsrpos 7980 prsradd 7981 prsrlt 7982 ltpsrprg 7998 map2psrprg 8000 pitonnlem1p1 8041 pitoregt0 8044 recidpirqlemcalc 8052 |
| Copyright terms: Public domain | W3C validator |