| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addcomprg | Unicode version | ||
| Description: Addition of positive reals is commutative. Proposition 9-3.5(ii) of [Gleason] p. 123. (Contributed by Jim Kingdon, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| addcomprg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prop 7559 |
. . . . . . . . 9
| |
| 2 | elprnql 7565 |
. . . . . . . . 9
| |
| 3 | 1, 2 | sylan 283 |
. . . . . . . 8
|
| 4 | prop 7559 |
. . . . . . . . . . . . 13
| |
| 5 | elprnql 7565 |
. . . . . . . . . . . . 13
| |
| 6 | 4, 5 | sylan 283 |
. . . . . . . . . . . 12
|
| 7 | addcomnqg 7465 |
. . . . . . . . . . . . 13
| |
| 8 | 7 | eqeq2d 2208 |
. . . . . . . . . . . 12
|
| 9 | 6, 8 | sylan2 286 |
. . . . . . . . . . 11
|
| 10 | 9 | anassrs 400 |
. . . . . . . . . 10
|
| 11 | 10 | rexbidva 2494 |
. . . . . . . . 9
|
| 12 | 11 | ancoms 268 |
. . . . . . . 8
|
| 13 | 3, 12 | sylan2 286 |
. . . . . . 7
|
| 14 | 13 | anassrs 400 |
. . . . . 6
|
| 15 | 14 | rexbidva 2494 |
. . . . 5
|
| 16 | rexcom 2661 |
. . . . 5
| |
| 17 | 15, 16 | bitrdi 196 |
. . . 4
|
| 18 | 17 | rabbidv 2752 |
. . 3
|
| 19 | elprnqu 7566 |
. . . . . . . . 9
| |
| 20 | 1, 19 | sylan 283 |
. . . . . . . 8
|
| 21 | elprnqu 7566 |
. . . . . . . . . . . . 13
| |
| 22 | 4, 21 | sylan 283 |
. . . . . . . . . . . 12
|
| 23 | 22, 8 | sylan2 286 |
. . . . . . . . . . 11
|
| 24 | 23 | anassrs 400 |
. . . . . . . . . 10
|
| 25 | 24 | rexbidva 2494 |
. . . . . . . . 9
|
| 26 | 25 | ancoms 268 |
. . . . . . . 8
|
| 27 | 20, 26 | sylan2 286 |
. . . . . . 7
|
| 28 | 27 | anassrs 400 |
. . . . . 6
|
| 29 | 28 | rexbidva 2494 |
. . . . 5
|
| 30 | rexcom 2661 |
. . . . 5
| |
| 31 | 29, 30 | bitrdi 196 |
. . . 4
|
| 32 | 31 | rabbidv 2752 |
. . 3
|
| 33 | 18, 32 | opeq12d 3817 |
. 2
|
| 34 | plpvlu 7622 |
. . 3
| |
| 35 | 34 | ancoms 268 |
. 2
|
| 36 | plpvlu 7622 |
. 2
| |
| 37 | 33, 35, 36 | 3eqtr4rd 2240 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-iord 4402 df-on 4404 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-irdg 6437 df-oadd 6487 df-omul 6488 df-er 6601 df-ec 6603 df-qs 6607 df-ni 7388 df-pli 7389 df-mi 7390 df-plpq 7428 df-enq 7431 df-nqqs 7432 df-plqqs 7433 df-inp 7550 df-iplp 7552 |
| This theorem is referenced by: prplnqu 7704 addextpr 7705 caucvgprlemcanl 7728 caucvgprprlemnkltj 7773 caucvgprprlemnbj 7777 caucvgprprlemmu 7779 caucvgprprlemloc 7787 caucvgprprlemexbt 7790 caucvgprprlemexb 7791 caucvgprprlemaddq 7792 enrer 7819 addcmpblnr 7823 mulcmpblnrlemg 7824 ltsrprg 7831 addcomsrg 7839 mulcomsrg 7841 mulasssrg 7842 distrsrg 7843 lttrsr 7846 ltposr 7847 ltsosr 7848 0lt1sr 7849 0idsr 7851 1idsr 7852 ltasrg 7854 recexgt0sr 7857 mulgt0sr 7862 aptisr 7863 mulextsr1lem 7864 archsr 7866 srpospr 7867 prsrpos 7869 prsradd 7870 prsrlt 7871 ltpsrprg 7887 map2psrprg 7889 pitonnlem1p1 7930 pitoregt0 7933 recidpirqlemcalc 7941 |
| Copyright terms: Public domain | W3C validator |