| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addcomprg | Unicode version | ||
| Description: Addition of positive reals is commutative. Proposition 9-3.5(ii) of [Gleason] p. 123. (Contributed by Jim Kingdon, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| addcomprg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prop 7630 |
. . . . . . . . 9
| |
| 2 | elprnql 7636 |
. . . . . . . . 9
| |
| 3 | 1, 2 | sylan 283 |
. . . . . . . 8
|
| 4 | prop 7630 |
. . . . . . . . . . . . 13
| |
| 5 | elprnql 7636 |
. . . . . . . . . . . . 13
| |
| 6 | 4, 5 | sylan 283 |
. . . . . . . . . . . 12
|
| 7 | addcomnqg 7536 |
. . . . . . . . . . . . 13
| |
| 8 | 7 | eqeq2d 2221 |
. . . . . . . . . . . 12
|
| 9 | 6, 8 | sylan2 286 |
. . . . . . . . . . 11
|
| 10 | 9 | anassrs 400 |
. . . . . . . . . 10
|
| 11 | 10 | rexbidva 2507 |
. . . . . . . . 9
|
| 12 | 11 | ancoms 268 |
. . . . . . . 8
|
| 13 | 3, 12 | sylan2 286 |
. . . . . . 7
|
| 14 | 13 | anassrs 400 |
. . . . . 6
|
| 15 | 14 | rexbidva 2507 |
. . . . 5
|
| 16 | rexcom 2675 |
. . . . 5
| |
| 17 | 15, 16 | bitrdi 196 |
. . . 4
|
| 18 | 17 | rabbidv 2768 |
. . 3
|
| 19 | elprnqu 7637 |
. . . . . . . . 9
| |
| 20 | 1, 19 | sylan 283 |
. . . . . . . 8
|
| 21 | elprnqu 7637 |
. . . . . . . . . . . . 13
| |
| 22 | 4, 21 | sylan 283 |
. . . . . . . . . . . 12
|
| 23 | 22, 8 | sylan2 286 |
. . . . . . . . . . 11
|
| 24 | 23 | anassrs 400 |
. . . . . . . . . 10
|
| 25 | 24 | rexbidva 2507 |
. . . . . . . . 9
|
| 26 | 25 | ancoms 268 |
. . . . . . . 8
|
| 27 | 20, 26 | sylan2 286 |
. . . . . . 7
|
| 28 | 27 | anassrs 400 |
. . . . . 6
|
| 29 | 28 | rexbidva 2507 |
. . . . 5
|
| 30 | rexcom 2675 |
. . . . 5
| |
| 31 | 29, 30 | bitrdi 196 |
. . . 4
|
| 32 | 31 | rabbidv 2768 |
. . 3
|
| 33 | 18, 32 | opeq12d 3844 |
. 2
|
| 34 | plpvlu 7693 |
. . 3
| |
| 35 | 34 | ancoms 268 |
. 2
|
| 36 | plpvlu 7693 |
. 2
| |
| 37 | 33, 35, 36 | 3eqtr4rd 2253 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-iinf 4657 |
| This theorem depends on definitions: df-bi 117 df-dc 839 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-tr 4162 df-id 4361 df-iord 4434 df-on 4436 df-suc 4439 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-recs 6421 df-irdg 6486 df-oadd 6536 df-omul 6537 df-er 6650 df-ec 6652 df-qs 6656 df-ni 7459 df-pli 7460 df-mi 7461 df-plpq 7499 df-enq 7502 df-nqqs 7503 df-plqqs 7504 df-inp 7621 df-iplp 7623 |
| This theorem is referenced by: prplnqu 7775 addextpr 7776 caucvgprlemcanl 7799 caucvgprprlemnkltj 7844 caucvgprprlemnbj 7848 caucvgprprlemmu 7850 caucvgprprlemloc 7858 caucvgprprlemexbt 7861 caucvgprprlemexb 7862 caucvgprprlemaddq 7863 enrer 7890 addcmpblnr 7894 mulcmpblnrlemg 7895 ltsrprg 7902 addcomsrg 7910 mulcomsrg 7912 mulasssrg 7913 distrsrg 7914 lttrsr 7917 ltposr 7918 ltsosr 7919 0lt1sr 7920 0idsr 7922 1idsr 7923 ltasrg 7925 recexgt0sr 7928 mulgt0sr 7933 aptisr 7934 mulextsr1lem 7935 archsr 7937 srpospr 7938 prsrpos 7940 prsradd 7941 prsrlt 7942 ltpsrprg 7958 map2psrprg 7960 pitonnlem1p1 8001 pitoregt0 8004 recidpirqlemcalc 8012 |
| Copyright terms: Public domain | W3C validator |