ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addcomprg Unicode version

Theorem addcomprg 7662
Description: Addition of positive reals is commutative. Proposition 9-3.5(ii) of [Gleason] p. 123. (Contributed by Jim Kingdon, 11-Dec-2019.)
Assertion
Ref Expression
addcomprg  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  +P.  B
)  =  ( B  +P.  A ) )

Proof of Theorem addcomprg
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prop 7559 . . . . . . . . 9  |-  ( B  e.  P.  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
2 elprnql 7565 . . . . . . . . 9  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  y  e.  ( 1st `  B ) )  -> 
y  e.  Q. )
31, 2sylan 283 . . . . . . . 8  |-  ( ( B  e.  P.  /\  y  e.  ( 1st `  B ) )  -> 
y  e.  Q. )
4 prop 7559 . . . . . . . . . . . . 13  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
5 elprnql 7565 . . . . . . . . . . . . 13  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  z  e.  ( 1st `  A ) )  -> 
z  e.  Q. )
64, 5sylan 283 . . . . . . . . . . . 12  |-  ( ( A  e.  P.  /\  z  e.  ( 1st `  A ) )  -> 
z  e.  Q. )
7 addcomnqg 7465 . . . . . . . . . . . . 13  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y  +Q  z
)  =  ( z  +Q  y ) )
87eqeq2d 2208 . . . . . . . . . . . 12  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( x  =  ( y  +Q  z )  <-> 
x  =  ( z  +Q  y ) ) )
96, 8sylan2 286 . . . . . . . . . . 11  |-  ( ( y  e.  Q.  /\  ( A  e.  P.  /\  z  e.  ( 1st `  A ) ) )  ->  ( x  =  ( y  +Q  z
)  <->  x  =  (
z  +Q  y ) ) )
109anassrs 400 . . . . . . . . . 10  |-  ( ( ( y  e.  Q.  /\  A  e.  P. )  /\  z  e.  ( 1st `  A ) )  ->  ( x  =  ( y  +Q  z
)  <->  x  =  (
z  +Q  y ) ) )
1110rexbidva 2494 . . . . . . . . 9  |-  ( ( y  e.  Q.  /\  A  e.  P. )  ->  ( E. z  e.  ( 1st `  A
) x  =  ( y  +Q  z )  <->  E. z  e.  ( 1st `  A ) x  =  ( z  +Q  y ) ) )
1211ancoms 268 . . . . . . . 8  |-  ( ( A  e.  P.  /\  y  e.  Q. )  ->  ( E. z  e.  ( 1st `  A
) x  =  ( y  +Q  z )  <->  E. z  e.  ( 1st `  A ) x  =  ( z  +Q  y ) ) )
133, 12sylan2 286 . . . . . . 7  |-  ( ( A  e.  P.  /\  ( B  e.  P.  /\  y  e.  ( 1st `  B ) ) )  ->  ( E. z  e.  ( 1st `  A
) x  =  ( y  +Q  z )  <->  E. z  e.  ( 1st `  A ) x  =  ( z  +Q  y ) ) )
1413anassrs 400 . . . . . 6  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  y  e.  ( 1st `  B ) )  ->  ( E. z  e.  ( 1st `  A
) x  =  ( y  +Q  z )  <->  E. z  e.  ( 1st `  A ) x  =  ( z  +Q  y ) ) )
1514rexbidva 2494 . . . . 5  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( E. y  e.  ( 1st `  B
) E. z  e.  ( 1st `  A
) x  =  ( y  +Q  z )  <->  E. y  e.  ( 1st `  B ) E. z  e.  ( 1st `  A ) x  =  ( z  +Q  y
) ) )
16 rexcom 2661 . . . . 5  |-  ( E. y  e.  ( 1st `  B ) E. z  e.  ( 1st `  A
) x  =  ( z  +Q  y )  <->  E. z  e.  ( 1st `  A ) E. y  e.  ( 1st `  B ) x  =  ( z  +Q  y
) )
1715, 16bitrdi 196 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( E. y  e.  ( 1st `  B
) E. z  e.  ( 1st `  A
) x  =  ( y  +Q  z )  <->  E. z  e.  ( 1st `  A ) E. y  e.  ( 1st `  B ) x  =  ( z  +Q  y
) ) )
1817rabbidv 2752 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  { x  e.  Q.  |  E. y  e.  ( 1st `  B ) E. z  e.  ( 1st `  A ) x  =  ( y  +Q  z ) }  =  { x  e. 
Q.  |  E. z  e.  ( 1st `  A
) E. y  e.  ( 1st `  B
) x  =  ( z  +Q  y ) } )
19 elprnqu 7566 . . . . . . . . 9  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  y  e.  ( 2nd `  B ) )  -> 
y  e.  Q. )
201, 19sylan 283 . . . . . . . 8  |-  ( ( B  e.  P.  /\  y  e.  ( 2nd `  B ) )  -> 
y  e.  Q. )
21 elprnqu 7566 . . . . . . . . . . . . 13  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  z  e.  ( 2nd `  A ) )  -> 
z  e.  Q. )
224, 21sylan 283 . . . . . . . . . . . 12  |-  ( ( A  e.  P.  /\  z  e.  ( 2nd `  A ) )  -> 
z  e.  Q. )
2322, 8sylan2 286 . . . . . . . . . . 11  |-  ( ( y  e.  Q.  /\  ( A  e.  P.  /\  z  e.  ( 2nd `  A ) ) )  ->  ( x  =  ( y  +Q  z
)  <->  x  =  (
z  +Q  y ) ) )
2423anassrs 400 . . . . . . . . . 10  |-  ( ( ( y  e.  Q.  /\  A  e.  P. )  /\  z  e.  ( 2nd `  A ) )  ->  ( x  =  ( y  +Q  z
)  <->  x  =  (
z  +Q  y ) ) )
2524rexbidva 2494 . . . . . . . . 9  |-  ( ( y  e.  Q.  /\  A  e.  P. )  ->  ( E. z  e.  ( 2nd `  A
) x  =  ( y  +Q  z )  <->  E. z  e.  ( 2nd `  A ) x  =  ( z  +Q  y ) ) )
2625ancoms 268 . . . . . . . 8  |-  ( ( A  e.  P.  /\  y  e.  Q. )  ->  ( E. z  e.  ( 2nd `  A
) x  =  ( y  +Q  z )  <->  E. z  e.  ( 2nd `  A ) x  =  ( z  +Q  y ) ) )
2720, 26sylan2 286 . . . . . . 7  |-  ( ( A  e.  P.  /\  ( B  e.  P.  /\  y  e.  ( 2nd `  B ) ) )  ->  ( E. z  e.  ( 2nd `  A
) x  =  ( y  +Q  z )  <->  E. z  e.  ( 2nd `  A ) x  =  ( z  +Q  y ) ) )
2827anassrs 400 . . . . . 6  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  y  e.  ( 2nd `  B ) )  ->  ( E. z  e.  ( 2nd `  A
) x  =  ( y  +Q  z )  <->  E. z  e.  ( 2nd `  A ) x  =  ( z  +Q  y ) ) )
2928rexbidva 2494 . . . . 5  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( E. y  e.  ( 2nd `  B
) E. z  e.  ( 2nd `  A
) x  =  ( y  +Q  z )  <->  E. y  e.  ( 2nd `  B ) E. z  e.  ( 2nd `  A ) x  =  ( z  +Q  y
) ) )
30 rexcom 2661 . . . . 5  |-  ( E. y  e.  ( 2nd `  B ) E. z  e.  ( 2nd `  A
) x  =  ( z  +Q  y )  <->  E. z  e.  ( 2nd `  A ) E. y  e.  ( 2nd `  B ) x  =  ( z  +Q  y
) )
3129, 30bitrdi 196 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( E. y  e.  ( 2nd `  B
) E. z  e.  ( 2nd `  A
) x  =  ( y  +Q  z )  <->  E. z  e.  ( 2nd `  A ) E. y  e.  ( 2nd `  B ) x  =  ( z  +Q  y
) ) )
3231rabbidv 2752 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  { x  e.  Q.  |  E. y  e.  ( 2nd `  B ) E. z  e.  ( 2nd `  A ) x  =  ( y  +Q  z ) }  =  { x  e. 
Q.  |  E. z  e.  ( 2nd `  A
) E. y  e.  ( 2nd `  B
) x  =  ( z  +Q  y ) } )
3318, 32opeq12d 3817 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  -> 
<. { x  e.  Q.  |  E. y  e.  ( 1st `  B ) E. z  e.  ( 1st `  A ) x  =  ( y  +Q  z ) } ,  { x  e. 
Q.  |  E. y  e.  ( 2nd `  B
) E. z  e.  ( 2nd `  A
) x  =  ( y  +Q  z ) } >.  =  <. { x  e.  Q.  |  E. z  e.  ( 1st `  A ) E. y  e.  ( 1st `  B ) x  =  ( z  +Q  y
) } ,  {
x  e.  Q.  |  E. z  e.  ( 2nd `  A ) E. y  e.  ( 2nd `  B ) x  =  ( z  +Q  y
) } >. )
34 plpvlu 7622 . . 3  |-  ( ( B  e.  P.  /\  A  e.  P. )  ->  ( B  +P.  A
)  =  <. { x  e.  Q.  |  E. y  e.  ( 1st `  B
) E. z  e.  ( 1st `  A
) x  =  ( y  +Q  z ) } ,  { x  e.  Q.  |  E. y  e.  ( 2nd `  B
) E. z  e.  ( 2nd `  A
) x  =  ( y  +Q  z ) } >. )
3534ancoms 268 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( B  +P.  A
)  =  <. { x  e.  Q.  |  E. y  e.  ( 1st `  B
) E. z  e.  ( 1st `  A
) x  =  ( y  +Q  z ) } ,  { x  e.  Q.  |  E. y  e.  ( 2nd `  B
) E. z  e.  ( 2nd `  A
) x  =  ( y  +Q  z ) } >. )
36 plpvlu 7622 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  +P.  B
)  =  <. { x  e.  Q.  |  E. z  e.  ( 1st `  A
) E. y  e.  ( 1st `  B
) x  =  ( z  +Q  y ) } ,  { x  e.  Q.  |  E. z  e.  ( 2nd `  A
) E. y  e.  ( 2nd `  B
) x  =  ( z  +Q  y ) } >. )
3733, 35, 363eqtr4rd 2240 1  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  +P.  B
)  =  ( B  +P.  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   E.wrex 2476   {crab 2479   <.cop 3626   ` cfv 5259  (class class class)co 5925   1stc1st 6205   2ndc2nd 6206   Q.cnq 7364    +Q cplq 7366   P.cnp 7375    +P. cpp 7377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-oadd 6487  df-omul 6488  df-er 6601  df-ec 6603  df-qs 6607  df-ni 7388  df-pli 7389  df-mi 7390  df-plpq 7428  df-enq 7431  df-nqqs 7432  df-plqqs 7433  df-inp 7550  df-iplp 7552
This theorem is referenced by:  prplnqu  7704  addextpr  7705  caucvgprlemcanl  7728  caucvgprprlemnkltj  7773  caucvgprprlemnbj  7777  caucvgprprlemmu  7779  caucvgprprlemloc  7787  caucvgprprlemexbt  7790  caucvgprprlemexb  7791  caucvgprprlemaddq  7792  enrer  7819  addcmpblnr  7823  mulcmpblnrlemg  7824  ltsrprg  7831  addcomsrg  7839  mulcomsrg  7841  mulasssrg  7842  distrsrg  7843  lttrsr  7846  ltposr  7847  ltsosr  7848  0lt1sr  7849  0idsr  7851  1idsr  7852  ltasrg  7854  recexgt0sr  7857  mulgt0sr  7862  aptisr  7863  mulextsr1lem  7864  archsr  7866  srpospr  7867  prsrpos  7869  prsradd  7870  prsrlt  7871  ltpsrprg  7887  map2psrprg  7889  pitonnlem1p1  7930  pitoregt0  7933  recidpirqlemcalc  7941
  Copyright terms: Public domain W3C validator