ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rimrcl Unicode version

Theorem rimrcl 13997
Description: Reverse closure for an isomorphism of rings. (Contributed by AV, 22-Oct-2019.)
Assertion
Ref Expression
rimrcl  |-  ( F  e.  ( R RingIso  S
)  ->  ( R  e.  _V  /\  S  e. 
_V ) )

Proof of Theorem rimrcl
Dummy variables  f  r  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rim 13990 . 2  |- RingIso  =  ( r  e.  _V , 
s  e.  _V  |->  { f  e.  ( r RingHom 
s )  |  `' f  e.  ( s RingHom  r ) } )
21elmpocl 6154 1  |-  ( F  e.  ( R RingIso  S
)  ->  ( R  e.  _V  /\  S  e. 
_V ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2177   {crab 2489   _Vcvv 2773   `'ccnv 4682  (class class class)co 5957   RingHom crh 13987   RingIso crs 13988
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-iota 5241  df-fun 5282  df-fv 5288  df-ov 5960  df-oprab 5961  df-mpo 5962  df-rim 13990
This theorem is referenced by:  isrim0  13998
  Copyright terms: Public domain W3C validator