ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rimrcl Unicode version

Theorem rimrcl 13659
Description: Reverse closure for an isomorphism of rings. (Contributed by AV, 22-Oct-2019.)
Assertion
Ref Expression
rimrcl  |-  ( F  e.  ( R RingIso  S
)  ->  ( R  e.  _V  /\  S  e. 
_V ) )

Proof of Theorem rimrcl
Dummy variables  f  r  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rim 13652 . 2  |- RingIso  =  ( r  e.  _V , 
s  e.  _V  |->  { f  e.  ( r RingHom 
s )  |  `' f  e.  ( s RingHom  r ) } )
21elmpocl 6115 1  |-  ( F  e.  ( R RingIso  S
)  ->  ( R  e.  _V  /\  S  e. 
_V ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2164   {crab 2476   _Vcvv 2760   `'ccnv 4659  (class class class)co 5919   RingHom crh 13649   RingIso crs 13650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-iota 5216  df-fun 5257  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-rim 13652
This theorem is referenced by:  isrim0  13660
  Copyright terms: Public domain W3C validator