ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isrim0 Unicode version

Theorem isrim0 14038
Description: A ring isomorphism is a homomorphism whose converse is also a homomorphism. (Contributed by AV, 22-Oct-2019.) Remove sethood antecedent. (Revised by SN, 10-Jan-2025.)
Assertion
Ref Expression
isrim0  |-  ( F  e.  ( R RingIso  S
)  <->  ( F  e.  ( R RingHom  S )  /\  `' F  e.  ( S RingHom  R ) ) )

Proof of Theorem isrim0
Dummy variables  f  r  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rimrcl 14037 . 2  |-  ( F  e.  ( R RingIso  S
)  ->  ( R  e.  _V  /\  S  e. 
_V ) )
2 rhmrcl1 14032 . . . . 5  |-  ( F  e.  ( R RingHom  S
)  ->  R  e.  Ring )
32elexd 2790 . . . 4  |-  ( F  e.  ( R RingHom  S
)  ->  R  e.  _V )
4 rhmrcl2 14033 . . . . 5  |-  ( F  e.  ( R RingHom  S
)  ->  S  e.  Ring )
54elexd 2790 . . . 4  |-  ( F  e.  ( R RingHom  S
)  ->  S  e.  _V )
63, 5jca 306 . . 3  |-  ( F  e.  ( R RingHom  S
)  ->  ( R  e.  _V  /\  S  e. 
_V ) )
76adantr 276 . 2  |-  ( ( F  e.  ( R RingHom  S )  /\  `' F  e.  ( S RingHom  R ) )  ->  ( R  e.  _V  /\  S  e.  _V ) )
8 df-rim 14030 . . . . . 6  |- RingIso  =  ( r  e.  _V , 
s  e.  _V  |->  { f  e.  ( r RingHom 
s )  |  `' f  e.  ( s RingHom  r ) } )
98a1i 9 . . . . 5  |-  ( ( R  e.  _V  /\  S  e.  _V )  -> RingIso 
=  ( r  e. 
_V ,  s  e. 
_V  |->  { f  e.  ( r RingHom  s )  |  `' f  e.  ( s RingHom  r ) } ) )
10 oveq12 5976 . . . . . . 7  |-  ( ( r  =  R  /\  s  =  S )  ->  ( r RingHom  s )  =  ( R RingHom  S
) )
1110adantl 277 . . . . . 6  |-  ( ( ( R  e.  _V  /\  S  e.  _V )  /\  ( r  =  R  /\  s  =  S ) )  ->  (
r RingHom  s )  =  ( R RingHom  S ) )
12 oveq12 5976 . . . . . . . . 9  |-  ( ( s  =  S  /\  r  =  R )  ->  ( s RingHom  r )  =  ( S RingHom  R
) )
1312ancoms 268 . . . . . . . 8  |-  ( ( r  =  R  /\  s  =  S )  ->  ( s RingHom  r )  =  ( S RingHom  R
) )
1413adantl 277 . . . . . . 7  |-  ( ( ( R  e.  _V  /\  S  e.  _V )  /\  ( r  =  R  /\  s  =  S ) )  ->  (
s RingHom  r )  =  ( S RingHom  R ) )
1514eleq2d 2277 . . . . . 6  |-  ( ( ( R  e.  _V  /\  S  e.  _V )  /\  ( r  =  R  /\  s  =  S ) )  ->  ( `' f  e.  (
s RingHom  r )  <->  `' f  e.  ( S RingHom  R )
) )
1611, 15rabeqbidv 2771 . . . . 5  |-  ( ( ( R  e.  _V  /\  S  e.  _V )  /\  ( r  =  R  /\  s  =  S ) )  ->  { f  e.  ( r RingHom  s
)  |  `' f  e.  ( s RingHom  r
) }  =  {
f  e.  ( R RingHom  S )  |  `' f  e.  ( S RingHom  R ) } )
17 simpl 109 . . . . 5  |-  ( ( R  e.  _V  /\  S  e.  _V )  ->  R  e.  _V )
18 simpr 110 . . . . 5  |-  ( ( R  e.  _V  /\  S  e.  _V )  ->  S  e.  _V )
19 rhmex 14034 . . . . . . 7  |-  ( ( R  e.  _V  /\  S  e.  _V )  ->  ( R RingHom  S )  e.  _V )
2017, 18, 19syl2anc 411 . . . . . 6  |-  ( ( R  e.  _V  /\  S  e.  _V )  ->  ( R RingHom  S )  e.  _V )
21 rabexg 4203 . . . . . 6  |-  ( ( R RingHom  S )  e.  _V  ->  { f  e.  ( R RingHom  S )  |  `' f  e.  ( S RingHom  R ) }  e.  _V )
2220, 21syl 14 . . . . 5  |-  ( ( R  e.  _V  /\  S  e.  _V )  ->  { f  e.  ( R RingHom  S )  |  `' f  e.  ( S RingHom  R ) }  e.  _V )
239, 16, 17, 18, 22ovmpod 6096 . . . 4  |-  ( ( R  e.  _V  /\  S  e.  _V )  ->  ( R RingIso  S )  =  { f  e.  ( R RingHom  S )  |  `' f  e.  ( S RingHom  R ) } )
2423eleq2d 2277 . . 3  |-  ( ( R  e.  _V  /\  S  e.  _V )  ->  ( F  e.  ( R RingIso  S )  <->  F  e.  { f  e.  ( R RingHom  S )  |  `' f  e.  ( S RingHom  R ) } ) )
25 cnveq 4870 . . . . 5  |-  ( f  =  F  ->  `' f  =  `' F
)
2625eleq1d 2276 . . . 4  |-  ( f  =  F  ->  ( `' f  e.  ( S RingHom  R )  <->  `' F  e.  ( S RingHom  R )
) )
2726elrab 2936 . . 3  |-  ( F  e.  { f  e.  ( R RingHom  S )  |  `' f  e.  ( S RingHom  R ) }  <->  ( F  e.  ( R RingHom  S )  /\  `' F  e.  ( S RingHom  R ) ) )
2824, 27bitrdi 196 . 2  |-  ( ( R  e.  _V  /\  S  e.  _V )  ->  ( F  e.  ( R RingIso  S )  <->  ( F  e.  ( R RingHom  S )  /\  `' F  e.  ( S RingHom  R ) ) ) )
291, 7, 28pm5.21nii 706 1  |-  ( F  e.  ( R RingIso  S
)  <->  ( F  e.  ( R RingHom  S )  /\  `' F  e.  ( S RingHom  R ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178   {crab 2490   _Vcvv 2776   `'ccnv 4692  (class class class)co 5967    e. cmpo 5969   Ringcrg 13873   RingHom crh 14027   RingIso crs 14028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-pre-ltirr 8072  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-map 6760  df-pnf 8144  df-mnf 8145  df-ltxr 8147  df-inn 9072  df-2 9130  df-3 9131  df-ndx 12950  df-slot 12951  df-base 12953  df-sets 12954  df-plusg 13037  df-mulr 13038  df-mhm 13406  df-ghm 13692  df-mgp 13798  df-ur 13837  df-ring 13875  df-rhm 14029  df-rim 14030
This theorem is referenced by:  isrim  14046  rimrhm  14048
  Copyright terms: Public domain W3C validator