ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isrim0 Unicode version

Theorem isrim0 13923
Description: A ring isomorphism is a homomorphism whose converse is also a homomorphism. (Contributed by AV, 22-Oct-2019.) Remove sethood antecedent. (Revised by SN, 10-Jan-2025.)
Assertion
Ref Expression
isrim0  |-  ( F  e.  ( R RingIso  S
)  <->  ( F  e.  ( R RingHom  S )  /\  `' F  e.  ( S RingHom  R ) ) )

Proof of Theorem isrim0
Dummy variables  f  r  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rimrcl 13922 . 2  |-  ( F  e.  ( R RingIso  S
)  ->  ( R  e.  _V  /\  S  e. 
_V ) )
2 rhmrcl1 13917 . . . . 5  |-  ( F  e.  ( R RingHom  S
)  ->  R  e.  Ring )
32elexd 2785 . . . 4  |-  ( F  e.  ( R RingHom  S
)  ->  R  e.  _V )
4 rhmrcl2 13918 . . . . 5  |-  ( F  e.  ( R RingHom  S
)  ->  S  e.  Ring )
54elexd 2785 . . . 4  |-  ( F  e.  ( R RingHom  S
)  ->  S  e.  _V )
63, 5jca 306 . . 3  |-  ( F  e.  ( R RingHom  S
)  ->  ( R  e.  _V  /\  S  e. 
_V ) )
76adantr 276 . 2  |-  ( ( F  e.  ( R RingHom  S )  /\  `' F  e.  ( S RingHom  R ) )  ->  ( R  e.  _V  /\  S  e.  _V ) )
8 df-rim 13915 . . . . . 6  |- RingIso  =  ( r  e.  _V , 
s  e.  _V  |->  { f  e.  ( r RingHom 
s )  |  `' f  e.  ( s RingHom  r ) } )
98a1i 9 . . . . 5  |-  ( ( R  e.  _V  /\  S  e.  _V )  -> RingIso 
=  ( r  e. 
_V ,  s  e. 
_V  |->  { f  e.  ( r RingHom  s )  |  `' f  e.  ( s RingHom  r ) } ) )
10 oveq12 5953 . . . . . . 7  |-  ( ( r  =  R  /\  s  =  S )  ->  ( r RingHom  s )  =  ( R RingHom  S
) )
1110adantl 277 . . . . . 6  |-  ( ( ( R  e.  _V  /\  S  e.  _V )  /\  ( r  =  R  /\  s  =  S ) )  ->  (
r RingHom  s )  =  ( R RingHom  S ) )
12 oveq12 5953 . . . . . . . . 9  |-  ( ( s  =  S  /\  r  =  R )  ->  ( s RingHom  r )  =  ( S RingHom  R
) )
1312ancoms 268 . . . . . . . 8  |-  ( ( r  =  R  /\  s  =  S )  ->  ( s RingHom  r )  =  ( S RingHom  R
) )
1413adantl 277 . . . . . . 7  |-  ( ( ( R  e.  _V  /\  S  e.  _V )  /\  ( r  =  R  /\  s  =  S ) )  ->  (
s RingHom  r )  =  ( S RingHom  R ) )
1514eleq2d 2275 . . . . . 6  |-  ( ( ( R  e.  _V  /\  S  e.  _V )  /\  ( r  =  R  /\  s  =  S ) )  ->  ( `' f  e.  (
s RingHom  r )  <->  `' f  e.  ( S RingHom  R )
) )
1611, 15rabeqbidv 2767 . . . . 5  |-  ( ( ( R  e.  _V  /\  S  e.  _V )  /\  ( r  =  R  /\  s  =  S ) )  ->  { f  e.  ( r RingHom  s
)  |  `' f  e.  ( s RingHom  r
) }  =  {
f  e.  ( R RingHom  S )  |  `' f  e.  ( S RingHom  R ) } )
17 simpl 109 . . . . 5  |-  ( ( R  e.  _V  /\  S  e.  _V )  ->  R  e.  _V )
18 simpr 110 . . . . 5  |-  ( ( R  e.  _V  /\  S  e.  _V )  ->  S  e.  _V )
19 rhmex 13919 . . . . . . 7  |-  ( ( R  e.  _V  /\  S  e.  _V )  ->  ( R RingHom  S )  e.  _V )
2017, 18, 19syl2anc 411 . . . . . 6  |-  ( ( R  e.  _V  /\  S  e.  _V )  ->  ( R RingHom  S )  e.  _V )
21 rabexg 4187 . . . . . 6  |-  ( ( R RingHom  S )  e.  _V  ->  { f  e.  ( R RingHom  S )  |  `' f  e.  ( S RingHom  R ) }  e.  _V )
2220, 21syl 14 . . . . 5  |-  ( ( R  e.  _V  /\  S  e.  _V )  ->  { f  e.  ( R RingHom  S )  |  `' f  e.  ( S RingHom  R ) }  e.  _V )
239, 16, 17, 18, 22ovmpod 6073 . . . 4  |-  ( ( R  e.  _V  /\  S  e.  _V )  ->  ( R RingIso  S )  =  { f  e.  ( R RingHom  S )  |  `' f  e.  ( S RingHom  R ) } )
2423eleq2d 2275 . . 3  |-  ( ( R  e.  _V  /\  S  e.  _V )  ->  ( F  e.  ( R RingIso  S )  <->  F  e.  { f  e.  ( R RingHom  S )  |  `' f  e.  ( S RingHom  R ) } ) )
25 cnveq 4852 . . . . 5  |-  ( f  =  F  ->  `' f  =  `' F
)
2625eleq1d 2274 . . . 4  |-  ( f  =  F  ->  ( `' f  e.  ( S RingHom  R )  <->  `' F  e.  ( S RingHom  R )
) )
2726elrab 2929 . . 3  |-  ( F  e.  { f  e.  ( R RingHom  S )  |  `' f  e.  ( S RingHom  R ) }  <->  ( F  e.  ( R RingHom  S )  /\  `' F  e.  ( S RingHom  R ) ) )
2824, 27bitrdi 196 . 2  |-  ( ( R  e.  _V  /\  S  e.  _V )  ->  ( F  e.  ( R RingIso  S )  <->  ( F  e.  ( R RingHom  S )  /\  `' F  e.  ( S RingHom  R ) ) ) )
291, 7, 28pm5.21nii 706 1  |-  ( F  e.  ( R RingIso  S
)  <->  ( F  e.  ( R RingHom  S )  /\  `' F  e.  ( S RingHom  R ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176   {crab 2488   _Vcvv 2772   `'ccnv 4674  (class class class)co 5944    e. cmpo 5946   Ringcrg 13758   RingHom crh 13912   RingIso crs 13913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-pre-ltirr 8037  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-map 6737  df-pnf 8109  df-mnf 8110  df-ltxr 8112  df-inn 9037  df-2 9095  df-3 9096  df-ndx 12835  df-slot 12836  df-base 12838  df-sets 12839  df-plusg 12922  df-mulr 12923  df-mhm 13291  df-ghm 13577  df-mgp 13683  df-ur 13722  df-ring 13760  df-rhm 13914  df-rim 13915
This theorem is referenced by:  isrim  13931  rimrhm  13933
  Copyright terms: Public domain W3C validator