ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isrim0 Unicode version

Theorem isrim0 13793
Description: A ring isomorphism is a homomorphism whose converse is also a homomorphism. (Contributed by AV, 22-Oct-2019.) Remove sethood antecedent. (Revised by SN, 10-Jan-2025.)
Assertion
Ref Expression
isrim0  |-  ( F  e.  ( R RingIso  S
)  <->  ( F  e.  ( R RingHom  S )  /\  `' F  e.  ( S RingHom  R ) ) )

Proof of Theorem isrim0
Dummy variables  f  r  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rimrcl 13792 . 2  |-  ( F  e.  ( R RingIso  S
)  ->  ( R  e.  _V  /\  S  e. 
_V ) )
2 rhmrcl1 13787 . . . . 5  |-  ( F  e.  ( R RingHom  S
)  ->  R  e.  Ring )
32elexd 2776 . . . 4  |-  ( F  e.  ( R RingHom  S
)  ->  R  e.  _V )
4 rhmrcl2 13788 . . . . 5  |-  ( F  e.  ( R RingHom  S
)  ->  S  e.  Ring )
54elexd 2776 . . . 4  |-  ( F  e.  ( R RingHom  S
)  ->  S  e.  _V )
63, 5jca 306 . . 3  |-  ( F  e.  ( R RingHom  S
)  ->  ( R  e.  _V  /\  S  e. 
_V ) )
76adantr 276 . 2  |-  ( ( F  e.  ( R RingHom  S )  /\  `' F  e.  ( S RingHom  R ) )  ->  ( R  e.  _V  /\  S  e.  _V ) )
8 df-rim 13785 . . . . . 6  |- RingIso  =  ( r  e.  _V , 
s  e.  _V  |->  { f  e.  ( r RingHom 
s )  |  `' f  e.  ( s RingHom  r ) } )
98a1i 9 . . . . 5  |-  ( ( R  e.  _V  /\  S  e.  _V )  -> RingIso 
=  ( r  e. 
_V ,  s  e. 
_V  |->  { f  e.  ( r RingHom  s )  |  `' f  e.  ( s RingHom  r ) } ) )
10 oveq12 5934 . . . . . . 7  |-  ( ( r  =  R  /\  s  =  S )  ->  ( r RingHom  s )  =  ( R RingHom  S
) )
1110adantl 277 . . . . . 6  |-  ( ( ( R  e.  _V  /\  S  e.  _V )  /\  ( r  =  R  /\  s  =  S ) )  ->  (
r RingHom  s )  =  ( R RingHom  S ) )
12 oveq12 5934 . . . . . . . . 9  |-  ( ( s  =  S  /\  r  =  R )  ->  ( s RingHom  r )  =  ( S RingHom  R
) )
1312ancoms 268 . . . . . . . 8  |-  ( ( r  =  R  /\  s  =  S )  ->  ( s RingHom  r )  =  ( S RingHom  R
) )
1413adantl 277 . . . . . . 7  |-  ( ( ( R  e.  _V  /\  S  e.  _V )  /\  ( r  =  R  /\  s  =  S ) )  ->  (
s RingHom  r )  =  ( S RingHom  R ) )
1514eleq2d 2266 . . . . . 6  |-  ( ( ( R  e.  _V  /\  S  e.  _V )  /\  ( r  =  R  /\  s  =  S ) )  ->  ( `' f  e.  (
s RingHom  r )  <->  `' f  e.  ( S RingHom  R )
) )
1611, 15rabeqbidv 2758 . . . . 5  |-  ( ( ( R  e.  _V  /\  S  e.  _V )  /\  ( r  =  R  /\  s  =  S ) )  ->  { f  e.  ( r RingHom  s
)  |  `' f  e.  ( s RingHom  r
) }  =  {
f  e.  ( R RingHom  S )  |  `' f  e.  ( S RingHom  R ) } )
17 simpl 109 . . . . 5  |-  ( ( R  e.  _V  /\  S  e.  _V )  ->  R  e.  _V )
18 simpr 110 . . . . 5  |-  ( ( R  e.  _V  /\  S  e.  _V )  ->  S  e.  _V )
19 rhmex 13789 . . . . . . 7  |-  ( ( R  e.  _V  /\  S  e.  _V )  ->  ( R RingHom  S )  e.  _V )
2017, 18, 19syl2anc 411 . . . . . 6  |-  ( ( R  e.  _V  /\  S  e.  _V )  ->  ( R RingHom  S )  e.  _V )
21 rabexg 4177 . . . . . 6  |-  ( ( R RingHom  S )  e.  _V  ->  { f  e.  ( R RingHom  S )  |  `' f  e.  ( S RingHom  R ) }  e.  _V )
2220, 21syl 14 . . . . 5  |-  ( ( R  e.  _V  /\  S  e.  _V )  ->  { f  e.  ( R RingHom  S )  |  `' f  e.  ( S RingHom  R ) }  e.  _V )
239, 16, 17, 18, 22ovmpod 6054 . . . 4  |-  ( ( R  e.  _V  /\  S  e.  _V )  ->  ( R RingIso  S )  =  { f  e.  ( R RingHom  S )  |  `' f  e.  ( S RingHom  R ) } )
2423eleq2d 2266 . . 3  |-  ( ( R  e.  _V  /\  S  e.  _V )  ->  ( F  e.  ( R RingIso  S )  <->  F  e.  { f  e.  ( R RingHom  S )  |  `' f  e.  ( S RingHom  R ) } ) )
25 cnveq 4841 . . . . 5  |-  ( f  =  F  ->  `' f  =  `' F
)
2625eleq1d 2265 . . . 4  |-  ( f  =  F  ->  ( `' f  e.  ( S RingHom  R )  <->  `' F  e.  ( S RingHom  R )
) )
2726elrab 2920 . . 3  |-  ( F  e.  { f  e.  ( R RingHom  S )  |  `' f  e.  ( S RingHom  R ) }  <->  ( F  e.  ( R RingHom  S )  /\  `' F  e.  ( S RingHom  R ) ) )
2824, 27bitrdi 196 . 2  |-  ( ( R  e.  _V  /\  S  e.  _V )  ->  ( F  e.  ( R RingIso  S )  <->  ( F  e.  ( R RingHom  S )  /\  `' F  e.  ( S RingHom  R ) ) ) )
291, 7, 28pm5.21nii 705 1  |-  ( F  e.  ( R RingIso  S
)  <->  ( F  e.  ( R RingHom  S )  /\  `' F  e.  ( S RingHom  R ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   {crab 2479   _Vcvv 2763   `'ccnv 4663  (class class class)co 5925    e. cmpo 5927   Ringcrg 13628   RingHom crh 13782   RingIso crs 13783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-pre-ltirr 8008  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-map 6718  df-pnf 8080  df-mnf 8081  df-ltxr 8083  df-inn 9008  df-2 9066  df-3 9067  df-ndx 12706  df-slot 12707  df-base 12709  df-sets 12710  df-plusg 12793  df-mulr 12794  df-mhm 13161  df-ghm 13447  df-mgp 13553  df-ur 13592  df-ring 13630  df-rhm 13784  df-rim 13785
This theorem is referenced by:  isrim  13801  rimrhm  13803
  Copyright terms: Public domain W3C validator