ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isrim0 Unicode version

Theorem isrim0 13657
Description: A ring isomorphism is a homomorphism whose converse is also a homomorphism. (Contributed by AV, 22-Oct-2019.) Remove sethood antecedent. (Revised by SN, 10-Jan-2025.)
Assertion
Ref Expression
isrim0  |-  ( F  e.  ( R RingIso  S
)  <->  ( F  e.  ( R RingHom  S )  /\  `' F  e.  ( S RingHom  R ) ) )

Proof of Theorem isrim0
Dummy variables  f  r  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rimrcl 13656 . 2  |-  ( F  e.  ( R RingIso  S
)  ->  ( R  e.  _V  /\  S  e. 
_V ) )
2 rhmrcl1 13651 . . . . 5  |-  ( F  e.  ( R RingHom  S
)  ->  R  e.  Ring )
32elexd 2773 . . . 4  |-  ( F  e.  ( R RingHom  S
)  ->  R  e.  _V )
4 rhmrcl2 13652 . . . . 5  |-  ( F  e.  ( R RingHom  S
)  ->  S  e.  Ring )
54elexd 2773 . . . 4  |-  ( F  e.  ( R RingHom  S
)  ->  S  e.  _V )
63, 5jca 306 . . 3  |-  ( F  e.  ( R RingHom  S
)  ->  ( R  e.  _V  /\  S  e. 
_V ) )
76adantr 276 . 2  |-  ( ( F  e.  ( R RingHom  S )  /\  `' F  e.  ( S RingHom  R ) )  ->  ( R  e.  _V  /\  S  e.  _V ) )
8 df-rim 13649 . . . . . 6  |- RingIso  =  ( r  e.  _V , 
s  e.  _V  |->  { f  e.  ( r RingHom 
s )  |  `' f  e.  ( s RingHom  r ) } )
98a1i 9 . . . . 5  |-  ( ( R  e.  _V  /\  S  e.  _V )  -> RingIso 
=  ( r  e. 
_V ,  s  e. 
_V  |->  { f  e.  ( r RingHom  s )  |  `' f  e.  ( s RingHom  r ) } ) )
10 oveq12 5927 . . . . . . 7  |-  ( ( r  =  R  /\  s  =  S )  ->  ( r RingHom  s )  =  ( R RingHom  S
) )
1110adantl 277 . . . . . 6  |-  ( ( ( R  e.  _V  /\  S  e.  _V )  /\  ( r  =  R  /\  s  =  S ) )  ->  (
r RingHom  s )  =  ( R RingHom  S ) )
12 oveq12 5927 . . . . . . . . 9  |-  ( ( s  =  S  /\  r  =  R )  ->  ( s RingHom  r )  =  ( S RingHom  R
) )
1312ancoms 268 . . . . . . . 8  |-  ( ( r  =  R  /\  s  =  S )  ->  ( s RingHom  r )  =  ( S RingHom  R
) )
1413adantl 277 . . . . . . 7  |-  ( ( ( R  e.  _V  /\  S  e.  _V )  /\  ( r  =  R  /\  s  =  S ) )  ->  (
s RingHom  r )  =  ( S RingHom  R ) )
1514eleq2d 2263 . . . . . 6  |-  ( ( ( R  e.  _V  /\  S  e.  _V )  /\  ( r  =  R  /\  s  =  S ) )  ->  ( `' f  e.  (
s RingHom  r )  <->  `' f  e.  ( S RingHom  R )
) )
1611, 15rabeqbidv 2755 . . . . 5  |-  ( ( ( R  e.  _V  /\  S  e.  _V )  /\  ( r  =  R  /\  s  =  S ) )  ->  { f  e.  ( r RingHom  s
)  |  `' f  e.  ( s RingHom  r
) }  =  {
f  e.  ( R RingHom  S )  |  `' f  e.  ( S RingHom  R ) } )
17 simpl 109 . . . . 5  |-  ( ( R  e.  _V  /\  S  e.  _V )  ->  R  e.  _V )
18 simpr 110 . . . . 5  |-  ( ( R  e.  _V  /\  S  e.  _V )  ->  S  e.  _V )
19 rhmex 13653 . . . . . . 7  |-  ( ( R  e.  _V  /\  S  e.  _V )  ->  ( R RingHom  S )  e.  _V )
2017, 18, 19syl2anc 411 . . . . . 6  |-  ( ( R  e.  _V  /\  S  e.  _V )  ->  ( R RingHom  S )  e.  _V )
21 rabexg 4172 . . . . . 6  |-  ( ( R RingHom  S )  e.  _V  ->  { f  e.  ( R RingHom  S )  |  `' f  e.  ( S RingHom  R ) }  e.  _V )
2220, 21syl 14 . . . . 5  |-  ( ( R  e.  _V  /\  S  e.  _V )  ->  { f  e.  ( R RingHom  S )  |  `' f  e.  ( S RingHom  R ) }  e.  _V )
239, 16, 17, 18, 22ovmpod 6046 . . . 4  |-  ( ( R  e.  _V  /\  S  e.  _V )  ->  ( R RingIso  S )  =  { f  e.  ( R RingHom  S )  |  `' f  e.  ( S RingHom  R ) } )
2423eleq2d 2263 . . 3  |-  ( ( R  e.  _V  /\  S  e.  _V )  ->  ( F  e.  ( R RingIso  S )  <->  F  e.  { f  e.  ( R RingHom  S )  |  `' f  e.  ( S RingHom  R ) } ) )
25 cnveq 4836 . . . . 5  |-  ( f  =  F  ->  `' f  =  `' F
)
2625eleq1d 2262 . . . 4  |-  ( f  =  F  ->  ( `' f  e.  ( S RingHom  R )  <->  `' F  e.  ( S RingHom  R )
) )
2726elrab 2916 . . 3  |-  ( F  e.  { f  e.  ( R RingHom  S )  |  `' f  e.  ( S RingHom  R ) }  <->  ( F  e.  ( R RingHom  S )  /\  `' F  e.  ( S RingHom  R ) ) )
2824, 27bitrdi 196 . 2  |-  ( ( R  e.  _V  /\  S  e.  _V )  ->  ( F  e.  ( R RingIso  S )  <->  ( F  e.  ( R RingHom  S )  /\  `' F  e.  ( S RingHom  R ) ) ) )
291, 7, 28pm5.21nii 705 1  |-  ( F  e.  ( R RingIso  S
)  <->  ( F  e.  ( R RingHom  S )  /\  `' F  e.  ( S RingHom  R ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   {crab 2476   _Vcvv 2760   `'ccnv 4658  (class class class)co 5918    e. cmpo 5920   Ringcrg 13492   RingHom crh 13646   RingIso crs 13647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-map 6704  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983  df-2 9041  df-3 9042  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-plusg 12708  df-mulr 12709  df-mhm 13031  df-ghm 13311  df-mgp 13417  df-ur 13456  df-ring 13494  df-rhm 13648  df-rim 13649
This theorem is referenced by:  isrim  13665  rimrhm  13667
  Copyright terms: Public domain W3C validator