ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isrim0 Unicode version

Theorem isrim0 13717
Description: A ring isomorphism is a homomorphism whose converse is also a homomorphism. (Contributed by AV, 22-Oct-2019.) Remove sethood antecedent. (Revised by SN, 10-Jan-2025.)
Assertion
Ref Expression
isrim0  |-  ( F  e.  ( R RingIso  S
)  <->  ( F  e.  ( R RingHom  S )  /\  `' F  e.  ( S RingHom  R ) ) )

Proof of Theorem isrim0
Dummy variables  f  r  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rimrcl 13716 . 2  |-  ( F  e.  ( R RingIso  S
)  ->  ( R  e.  _V  /\  S  e. 
_V ) )
2 rhmrcl1 13711 . . . . 5  |-  ( F  e.  ( R RingHom  S
)  ->  R  e.  Ring )
32elexd 2776 . . . 4  |-  ( F  e.  ( R RingHom  S
)  ->  R  e.  _V )
4 rhmrcl2 13712 . . . . 5  |-  ( F  e.  ( R RingHom  S
)  ->  S  e.  Ring )
54elexd 2776 . . . 4  |-  ( F  e.  ( R RingHom  S
)  ->  S  e.  _V )
63, 5jca 306 . . 3  |-  ( F  e.  ( R RingHom  S
)  ->  ( R  e.  _V  /\  S  e. 
_V ) )
76adantr 276 . 2  |-  ( ( F  e.  ( R RingHom  S )  /\  `' F  e.  ( S RingHom  R ) )  ->  ( R  e.  _V  /\  S  e.  _V ) )
8 df-rim 13709 . . . . . 6  |- RingIso  =  ( r  e.  _V , 
s  e.  _V  |->  { f  e.  ( r RingHom 
s )  |  `' f  e.  ( s RingHom  r ) } )
98a1i 9 . . . . 5  |-  ( ( R  e.  _V  /\  S  e.  _V )  -> RingIso 
=  ( r  e. 
_V ,  s  e. 
_V  |->  { f  e.  ( r RingHom  s )  |  `' f  e.  ( s RingHom  r ) } ) )
10 oveq12 5931 . . . . . . 7  |-  ( ( r  =  R  /\  s  =  S )  ->  ( r RingHom  s )  =  ( R RingHom  S
) )
1110adantl 277 . . . . . 6  |-  ( ( ( R  e.  _V  /\  S  e.  _V )  /\  ( r  =  R  /\  s  =  S ) )  ->  (
r RingHom  s )  =  ( R RingHom  S ) )
12 oveq12 5931 . . . . . . . . 9  |-  ( ( s  =  S  /\  r  =  R )  ->  ( s RingHom  r )  =  ( S RingHom  R
) )
1312ancoms 268 . . . . . . . 8  |-  ( ( r  =  R  /\  s  =  S )  ->  ( s RingHom  r )  =  ( S RingHom  R
) )
1413adantl 277 . . . . . . 7  |-  ( ( ( R  e.  _V  /\  S  e.  _V )  /\  ( r  =  R  /\  s  =  S ) )  ->  (
s RingHom  r )  =  ( S RingHom  R ) )
1514eleq2d 2266 . . . . . 6  |-  ( ( ( R  e.  _V  /\  S  e.  _V )  /\  ( r  =  R  /\  s  =  S ) )  ->  ( `' f  e.  (
s RingHom  r )  <->  `' f  e.  ( S RingHom  R )
) )
1611, 15rabeqbidv 2758 . . . . 5  |-  ( ( ( R  e.  _V  /\  S  e.  _V )  /\  ( r  =  R  /\  s  =  S ) )  ->  { f  e.  ( r RingHom  s
)  |  `' f  e.  ( s RingHom  r
) }  =  {
f  e.  ( R RingHom  S )  |  `' f  e.  ( S RingHom  R ) } )
17 simpl 109 . . . . 5  |-  ( ( R  e.  _V  /\  S  e.  _V )  ->  R  e.  _V )
18 simpr 110 . . . . 5  |-  ( ( R  e.  _V  /\  S  e.  _V )  ->  S  e.  _V )
19 rhmex 13713 . . . . . . 7  |-  ( ( R  e.  _V  /\  S  e.  _V )  ->  ( R RingHom  S )  e.  _V )
2017, 18, 19syl2anc 411 . . . . . 6  |-  ( ( R  e.  _V  /\  S  e.  _V )  ->  ( R RingHom  S )  e.  _V )
21 rabexg 4176 . . . . . 6  |-  ( ( R RingHom  S )  e.  _V  ->  { f  e.  ( R RingHom  S )  |  `' f  e.  ( S RingHom  R ) }  e.  _V )
2220, 21syl 14 . . . . 5  |-  ( ( R  e.  _V  /\  S  e.  _V )  ->  { f  e.  ( R RingHom  S )  |  `' f  e.  ( S RingHom  R ) }  e.  _V )
239, 16, 17, 18, 22ovmpod 6050 . . . 4  |-  ( ( R  e.  _V  /\  S  e.  _V )  ->  ( R RingIso  S )  =  { f  e.  ( R RingHom  S )  |  `' f  e.  ( S RingHom  R ) } )
2423eleq2d 2266 . . 3  |-  ( ( R  e.  _V  /\  S  e.  _V )  ->  ( F  e.  ( R RingIso  S )  <->  F  e.  { f  e.  ( R RingHom  S )  |  `' f  e.  ( S RingHom  R ) } ) )
25 cnveq 4840 . . . . 5  |-  ( f  =  F  ->  `' f  =  `' F
)
2625eleq1d 2265 . . . 4  |-  ( f  =  F  ->  ( `' f  e.  ( S RingHom  R )  <->  `' F  e.  ( S RingHom  R )
) )
2726elrab 2920 . . 3  |-  ( F  e.  { f  e.  ( R RingHom  S )  |  `' f  e.  ( S RingHom  R ) }  <->  ( F  e.  ( R RingHom  S )  /\  `' F  e.  ( S RingHom  R ) ) )
2824, 27bitrdi 196 . 2  |-  ( ( R  e.  _V  /\  S  e.  _V )  ->  ( F  e.  ( R RingIso  S )  <->  ( F  e.  ( R RingHom  S )  /\  `' F  e.  ( S RingHom  R ) ) ) )
291, 7, 28pm5.21nii 705 1  |-  ( F  e.  ( R RingIso  S
)  <->  ( F  e.  ( R RingHom  S )  /\  `' F  e.  ( S RingHom  R ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   {crab 2479   _Vcvv 2763   `'ccnv 4662  (class class class)co 5922    e. cmpo 5924   Ringcrg 13552   RingHom crh 13706   RingIso crs 13707
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-map 6709  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991  df-2 9049  df-3 9050  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-plusg 12768  df-mulr 12769  df-mhm 13091  df-ghm 13371  df-mgp 13477  df-ur 13516  df-ring 13554  df-rhm 13708  df-rim 13709
This theorem is referenced by:  isrim  13725  rimrhm  13727
  Copyright terms: Public domain W3C validator