| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elmpocl | Unicode version | ||
| Description: If a two-parameter class is inhabited, constrain the implicit pair. (Contributed by Stefan O'Rear, 7-Mar-2015.) |
| Ref | Expression |
|---|---|
| elmpocl.f |
|
| Ref | Expression |
|---|---|
| elmpocl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmpocl.f |
. . . . . 6
| |
| 2 | df-mpo 5930 |
. . . . . 6
| |
| 3 | 1, 2 | eqtri 2217 |
. . . . 5
|
| 4 | 3 | dmeqi 4868 |
. . . 4
|
| 5 | dmoprabss 6008 |
. . . 4
| |
| 6 | 4, 5 | eqsstri 3216 |
. . 3
|
| 7 | 1 | mpofun 6028 |
. . . . . 6
|
| 8 | funrel 5276 |
. . . . . 6
| |
| 9 | 7, 8 | ax-mp 5 |
. . . . 5
|
| 10 | relelfvdm 5593 |
. . . . 5
| |
| 11 | 9, 10 | mpan 424 |
. . . 4
|
| 12 | df-ov 5928 |
. . . 4
| |
| 13 | 11, 12 | eleq2s 2291 |
. . 3
|
| 14 | 6, 13 | sselid 3182 |
. 2
|
| 15 | opelxp 4694 |
. 2
| |
| 16 | 14, 15 | sylib 122 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 |
| This theorem is referenced by: elmpocl1 6123 elmpocl2 6124 elovmpo 6126 elovmporab 6127 elovmporab1w 6128 elpmi 6735 elmapex 6737 pmsspw 6751 ixxssxr 9992 elixx3g 9993 ixxssixx 9994 eliooxr 10019 elfz2 10107 restsspw 12951 ismhm 13163 isghm 13449 isrhm 13790 rimrcl 13792 restrcl 14487 ssrest 14502 iscn2 14520 ishmeo 14624 limcrcl 14978 |
| Copyright terms: Public domain | W3C validator |