ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elmpocl Unicode version

Theorem elmpocl 6122
Description: If a two-parameter class is inhabited, constrain the implicit pair. (Contributed by Stefan O'Rear, 7-Mar-2015.)
Hypothesis
Ref Expression
elmpocl.f  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
Assertion
Ref Expression
elmpocl  |-  ( X  e.  ( S F T )  ->  ( S  e.  A  /\  T  e.  B )
)
Distinct variable groups:    x, A, y   
x, B, y
Allowed substitution hints:    C( x, y)    S( x, y)    T( x, y)    F( x, y)    X( x, y)

Proof of Theorem elmpocl
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 elmpocl.f . . . . . 6  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
2 df-mpo 5930 . . . . . 6  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  C
) }
31, 2eqtri 2217 . . . . 5  |-  F  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C ) }
43dmeqi 4868 . . . 4  |-  dom  F  =  dom  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  C
) }
5 dmoprabss 6008 . . . 4  |-  dom  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C ) }  C_  ( A  X.  B
)
64, 5eqsstri 3216 . . 3  |-  dom  F  C_  ( A  X.  B
)
71mpofun 6028 . . . . . 6  |-  Fun  F
8 funrel 5276 . . . . . 6  |-  ( Fun 
F  ->  Rel  F )
97, 8ax-mp 5 . . . . 5  |-  Rel  F
10 relelfvdm 5593 . . . . 5  |-  ( ( Rel  F  /\  X  e.  ( F `  <. S ,  T >. )
)  ->  <. S ,  T >.  e.  dom  F
)
119, 10mpan 424 . . . 4  |-  ( X  e.  ( F `  <. S ,  T >. )  ->  <. S ,  T >.  e.  dom  F )
12 df-ov 5928 . . . 4  |-  ( S F T )  =  ( F `  <. S ,  T >. )
1311, 12eleq2s 2291 . . 3  |-  ( X  e.  ( S F T )  ->  <. S ,  T >.  e.  dom  F
)
146, 13sselid 3182 . 2  |-  ( X  e.  ( S F T )  ->  <. S ,  T >.  e.  ( A  X.  B ) )
15 opelxp 4694 . 2  |-  ( <. S ,  T >.  e.  ( A  X.  B
)  <->  ( S  e.  A  /\  T  e.  B ) )
1614, 15sylib 122 1  |-  ( X  e.  ( S F T )  ->  ( S  e.  A  /\  T  e.  B )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   <.cop 3626    X. cxp 4662   dom cdm 4664   Rel wrel 4669   Fun wfun 5253   ` cfv 5259  (class class class)co 5925   {coprab 5926    e. cmpo 5927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930
This theorem is referenced by:  elmpocl1  6123  elmpocl2  6124  elovmpo  6126  elovmporab  6127  elovmporab1w  6128  elpmi  6735  elmapex  6737  pmsspw  6751  ixxssxr  9992  elixx3g  9993  ixxssixx  9994  eliooxr  10019  elfz2  10107  restsspw  12951  ismhm  13163  isghm  13449  isrhm  13790  rimrcl  13792  restrcl  14487  ssrest  14502  iscn2  14520  ishmeo  14624  limcrcl  14978
  Copyright terms: Public domain W3C validator