| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elmpocl | Unicode version | ||
| Description: If a two-parameter class is inhabited, constrain the implicit pair. (Contributed by Stefan O'Rear, 7-Mar-2015.) |
| Ref | Expression |
|---|---|
| elmpocl.f |
|
| Ref | Expression |
|---|---|
| elmpocl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmpocl.f |
. . . . . 6
| |
| 2 | df-mpo 5951 |
. . . . . 6
| |
| 3 | 1, 2 | eqtri 2226 |
. . . . 5
|
| 4 | 3 | dmeqi 4880 |
. . . 4
|
| 5 | dmoprabss 6029 |
. . . 4
| |
| 6 | 4, 5 | eqsstri 3225 |
. . 3
|
| 7 | 1 | mpofun 6049 |
. . . . . 6
|
| 8 | funrel 5289 |
. . . . . 6
| |
| 9 | 7, 8 | ax-mp 5 |
. . . . 5
|
| 10 | relelfvdm 5610 |
. . . . 5
| |
| 11 | 9, 10 | mpan 424 |
. . . 4
|
| 12 | df-ov 5949 |
. . . 4
| |
| 13 | 11, 12 | eleq2s 2300 |
. . 3
|
| 14 | 6, 13 | sselid 3191 |
. 2
|
| 15 | opelxp 4706 |
. 2
| |
| 16 | 14, 15 | sylib 122 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-iota 5233 df-fun 5274 df-fv 5280 df-ov 5949 df-oprab 5950 df-mpo 5951 |
| This theorem is referenced by: elmpocl1 6144 elmpocl2 6145 elovmpo 6147 elovmporab 6148 elovmporab1w 6149 elpmi 6756 elmapex 6758 pmsspw 6772 ixxssxr 10024 elixx3g 10025 ixxssixx 10026 eliooxr 10051 elfz2 10139 restsspw 13114 ismhm 13326 isghm 13612 isrhm 13953 rimrcl 13955 restrcl 14672 ssrest 14687 iscn2 14705 ishmeo 14809 limcrcl 15163 |
| Copyright terms: Public domain | W3C validator |