ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elmpocl Unicode version

Theorem elmpocl 6200
Description: If a two-parameter class is inhabited, constrain the implicit pair. (Contributed by Stefan O'Rear, 7-Mar-2015.)
Hypothesis
Ref Expression
elmpocl.f  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
Assertion
Ref Expression
elmpocl  |-  ( X  e.  ( S F T )  ->  ( S  e.  A  /\  T  e.  B )
)
Distinct variable groups:    x, A, y   
x, B, y
Allowed substitution hints:    C( x, y)    S( x, y)    T( x, y)    F( x, y)    X( x, y)

Proof of Theorem elmpocl
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 elmpocl.f . . . . . 6  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
2 df-mpo 6006 . . . . . 6  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  C
) }
31, 2eqtri 2250 . . . . 5  |-  F  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C ) }
43dmeqi 4924 . . . 4  |-  dom  F  =  dom  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  C
) }
5 dmoprabss 6086 . . . 4  |-  dom  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C ) }  C_  ( A  X.  B
)
64, 5eqsstri 3256 . . 3  |-  dom  F  C_  ( A  X.  B
)
71mpofun 6106 . . . . . 6  |-  Fun  F
8 funrel 5335 . . . . . 6  |-  ( Fun 
F  ->  Rel  F )
97, 8ax-mp 5 . . . . 5  |-  Rel  F
10 relelfvdm 5659 . . . . 5  |-  ( ( Rel  F  /\  X  e.  ( F `  <. S ,  T >. )
)  ->  <. S ,  T >.  e.  dom  F
)
119, 10mpan 424 . . . 4  |-  ( X  e.  ( F `  <. S ,  T >. )  ->  <. S ,  T >.  e.  dom  F )
12 df-ov 6004 . . . 4  |-  ( S F T )  =  ( F `  <. S ,  T >. )
1311, 12eleq2s 2324 . . 3  |-  ( X  e.  ( S F T )  ->  <. S ,  T >.  e.  dom  F
)
146, 13sselid 3222 . 2  |-  ( X  e.  ( S F T )  ->  <. S ,  T >.  e.  ( A  X.  B ) )
15 opelxp 4749 . 2  |-  ( <. S ,  T >.  e.  ( A  X.  B
)  <->  ( S  e.  A  /\  T  e.  B ) )
1614, 15sylib 122 1  |-  ( X  e.  ( S F T )  ->  ( S  e.  A  /\  T  e.  B )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   <.cop 3669    X. cxp 4717   dom cdm 4719   Rel wrel 4724   Fun wfun 5312   ` cfv 5318  (class class class)co 6001   {coprab 6002    e. cmpo 6003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006
This theorem is referenced by:  elmpocl1  6201  elmpocl2  6202  elovmpo  6204  elovmporab  6205  elovmporab1w  6206  elpmi  6814  elmapex  6816  pmsspw  6830  ixxssxr  10096  elixx3g  10097  ixxssixx  10098  eliooxr  10123  elfz2  10211  restsspw  13282  ismhm  13494  isghm  13780  isrhm  14122  rimrcl  14124  restrcl  14841  ssrest  14856  iscn2  14874  ishmeo  14978  limcrcl  15332
  Copyright terms: Public domain W3C validator