ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elmpocl Unicode version

Theorem elmpocl 6143
Description: If a two-parameter class is inhabited, constrain the implicit pair. (Contributed by Stefan O'Rear, 7-Mar-2015.)
Hypothesis
Ref Expression
elmpocl.f  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
Assertion
Ref Expression
elmpocl  |-  ( X  e.  ( S F T )  ->  ( S  e.  A  /\  T  e.  B )
)
Distinct variable groups:    x, A, y   
x, B, y
Allowed substitution hints:    C( x, y)    S( x, y)    T( x, y)    F( x, y)    X( x, y)

Proof of Theorem elmpocl
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 elmpocl.f . . . . . 6  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
2 df-mpo 5951 . . . . . 6  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  C
) }
31, 2eqtri 2226 . . . . 5  |-  F  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C ) }
43dmeqi 4880 . . . 4  |-  dom  F  =  dom  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  C
) }
5 dmoprabss 6029 . . . 4  |-  dom  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C ) }  C_  ( A  X.  B
)
64, 5eqsstri 3225 . . 3  |-  dom  F  C_  ( A  X.  B
)
71mpofun 6049 . . . . . 6  |-  Fun  F
8 funrel 5289 . . . . . 6  |-  ( Fun 
F  ->  Rel  F )
97, 8ax-mp 5 . . . . 5  |-  Rel  F
10 relelfvdm 5610 . . . . 5  |-  ( ( Rel  F  /\  X  e.  ( F `  <. S ,  T >. )
)  ->  <. S ,  T >.  e.  dom  F
)
119, 10mpan 424 . . . 4  |-  ( X  e.  ( F `  <. S ,  T >. )  ->  <. S ,  T >.  e.  dom  F )
12 df-ov 5949 . . . 4  |-  ( S F T )  =  ( F `  <. S ,  T >. )
1311, 12eleq2s 2300 . . 3  |-  ( X  e.  ( S F T )  ->  <. S ,  T >.  e.  dom  F
)
146, 13sselid 3191 . 2  |-  ( X  e.  ( S F T )  ->  <. S ,  T >.  e.  ( A  X.  B ) )
15 opelxp 4706 . 2  |-  ( <. S ,  T >.  e.  ( A  X.  B
)  <->  ( S  e.  A  /\  T  e.  B ) )
1614, 15sylib 122 1  |-  ( X  e.  ( S F T )  ->  ( S  e.  A  /\  T  e.  B )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   <.cop 3636    X. cxp 4674   dom cdm 4676   Rel wrel 4681   Fun wfun 5266   ` cfv 5272  (class class class)co 5946   {coprab 5947    e. cmpo 5948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-opab 4107  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-iota 5233  df-fun 5274  df-fv 5280  df-ov 5949  df-oprab 5950  df-mpo 5951
This theorem is referenced by:  elmpocl1  6144  elmpocl2  6145  elovmpo  6147  elovmporab  6148  elovmporab1w  6149  elpmi  6756  elmapex  6758  pmsspw  6772  ixxssxr  10024  elixx3g  10025  ixxssixx  10026  eliooxr  10051  elfz2  10139  restsspw  13114  ismhm  13326  isghm  13612  isrhm  13953  rimrcl  13955  restrcl  14672  ssrest  14687  iscn2  14705  ishmeo  14809  limcrcl  15163
  Copyright terms: Public domain W3C validator