Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elmpocl | Unicode version |
Description: If a two-parameter class is inhabited, constrain the implicit pair. (Contributed by Stefan O'Rear, 7-Mar-2015.) |
Ref | Expression |
---|---|
elmpocl.f |
Ref | Expression |
---|---|
elmpocl |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmpocl.f | . . . . . 6 | |
2 | df-mpo 5858 | . . . . . 6 | |
3 | 1, 2 | eqtri 2191 | . . . . 5 |
4 | 3 | dmeqi 4812 | . . . 4 |
5 | dmoprabss 5935 | . . . 4 | |
6 | 4, 5 | eqsstri 3179 | . . 3 |
7 | 1 | mpofun 5955 | . . . . . 6 |
8 | funrel 5215 | . . . . . 6 | |
9 | 7, 8 | ax-mp 5 | . . . . 5 |
10 | relelfvdm 5528 | . . . . 5 | |
11 | 9, 10 | mpan 422 | . . . 4 |
12 | df-ov 5856 | . . . 4 | |
13 | 11, 12 | eleq2s 2265 | . . 3 |
14 | 6, 13 | sselid 3145 | . 2 |
15 | opelxp 4641 | . 2 | |
16 | 14, 15 | sylib 121 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wcel 2141 cop 3586 cxp 4609 cdm 4611 wrel 4616 wfun 5192 cfv 5198 (class class class)co 5853 coprab 5854 cmpo 5855 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 |
This theorem is referenced by: elmpocl1 6048 elmpocl2 6049 elovmpo 6050 elpmi 6645 elmapex 6647 pmsspw 6661 ixxssxr 9857 elixx3g 9858 ixxssixx 9859 eliooxr 9884 elfz2 9972 restsspw 12589 ismhm 12685 restrcl 12961 ssrest 12976 iscn2 12994 ishmeo 13098 limcrcl 13421 |
Copyright terms: Public domain | W3C validator |