| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rncoss | GIF version | ||
| Description: Range of a composition. (Contributed by NM, 19-Mar-1998.) |
| Ref | Expression |
|---|---|
| rncoss | ⊢ ran (𝐴 ∘ 𝐵) ⊆ ran 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmcoss 4970 | . 2 ⊢ dom (◡𝐵 ∘ ◡𝐴) ⊆ dom ◡𝐴 | |
| 2 | df-rn 4707 | . . 3 ⊢ ran (𝐴 ∘ 𝐵) = dom ◡(𝐴 ∘ 𝐵) | |
| 3 | cnvco 4884 | . . . 4 ⊢ ◡(𝐴 ∘ 𝐵) = (◡𝐵 ∘ ◡𝐴) | |
| 4 | 3 | dmeqi 4901 | . . 3 ⊢ dom ◡(𝐴 ∘ 𝐵) = dom (◡𝐵 ∘ ◡𝐴) |
| 5 | 2, 4 | eqtri 2230 | . 2 ⊢ ran (𝐴 ∘ 𝐵) = dom (◡𝐵 ∘ ◡𝐴) |
| 6 | df-rn 4707 | . 2 ⊢ ran 𝐴 = dom ◡𝐴 | |
| 7 | 1, 5, 6 | 3sstr4i 3245 | 1 ⊢ ran (𝐴 ∘ 𝐵) ⊆ ran 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: ⊆ wss 3177 ◡ccnv 4695 dom cdm 4696 ran crn 4697 ∘ ccom 4700 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-v 2781 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-br 4063 df-opab 4125 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 |
| This theorem is referenced by: cossxp 5227 fco 5465 caseinj 7224 djuinj 7241 znleval 14582 |
| Copyright terms: Public domain | W3C validator |