ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rncoss GIF version

Theorem rncoss 4971
Description: Range of a composition. (Contributed by NM, 19-Mar-1998.)
Assertion
Ref Expression
rncoss ran (𝐴𝐵) ⊆ ran 𝐴

Proof of Theorem rncoss
StepHypRef Expression
1 dmcoss 4970 . 2 dom (𝐵𝐴) ⊆ dom 𝐴
2 df-rn 4707 . . 3 ran (𝐴𝐵) = dom (𝐴𝐵)
3 cnvco 4884 . . . 4 (𝐴𝐵) = (𝐵𝐴)
43dmeqi 4901 . . 3 dom (𝐴𝐵) = dom (𝐵𝐴)
52, 4eqtri 2230 . 2 ran (𝐴𝐵) = dom (𝐵𝐴)
6 df-rn 4707 . 2 ran 𝐴 = dom 𝐴
71, 5, 63sstr4i 3245 1 ran (𝐴𝐵) ⊆ ran 𝐴
Colors of variables: wff set class
Syntax hints:  wss 3177  ccnv 4695  dom cdm 4696  ran crn 4697  ccom 4700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-v 2781  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-br 4063  df-opab 4125  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707
This theorem is referenced by:  cossxp  5227  fco  5465  caseinj  7224  djuinj  7241  znleval  14582
  Copyright terms: Public domain W3C validator