ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rncoss GIF version

Theorem rncoss 4954
Description: Range of a composition. (Contributed by NM, 19-Mar-1998.)
Assertion
Ref Expression
rncoss ran (𝐴𝐵) ⊆ ran 𝐴

Proof of Theorem rncoss
StepHypRef Expression
1 dmcoss 4953 . 2 dom (𝐵𝐴) ⊆ dom 𝐴
2 df-rn 4690 . . 3 ran (𝐴𝐵) = dom (𝐴𝐵)
3 cnvco 4867 . . . 4 (𝐴𝐵) = (𝐵𝐴)
43dmeqi 4884 . . 3 dom (𝐴𝐵) = dom (𝐵𝐴)
52, 4eqtri 2227 . 2 ran (𝐴𝐵) = dom (𝐵𝐴)
6 df-rn 4690 . 2 ran 𝐴 = dom 𝐴
71, 5, 63sstr4i 3235 1 ran (𝐴𝐵) ⊆ ran 𝐴
Colors of variables: wff set class
Syntax hints:  wss 3167  ccnv 4678  dom cdm 4679  ran crn 4680  ccom 4683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-br 4048  df-opab 4110  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690
This theorem is referenced by:  cossxp  5210  fco  5447  caseinj  7198  djuinj  7215  znleval  14459
  Copyright terms: Public domain W3C validator