![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rncoss | GIF version |
Description: Range of a composition. (Contributed by NM, 19-Mar-1998.) |
Ref | Expression |
---|---|
rncoss | ⊢ ran (𝐴 ∘ 𝐵) ⊆ ran 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmcoss 4910 | . 2 ⊢ dom (◡𝐵 ∘ ◡𝐴) ⊆ dom ◡𝐴 | |
2 | df-rn 4651 | . . 3 ⊢ ran (𝐴 ∘ 𝐵) = dom ◡(𝐴 ∘ 𝐵) | |
3 | cnvco 4826 | . . . 4 ⊢ ◡(𝐴 ∘ 𝐵) = (◡𝐵 ∘ ◡𝐴) | |
4 | 3 | dmeqi 4842 | . . 3 ⊢ dom ◡(𝐴 ∘ 𝐵) = dom (◡𝐵 ∘ ◡𝐴) |
5 | 2, 4 | eqtri 2209 | . 2 ⊢ ran (𝐴 ∘ 𝐵) = dom (◡𝐵 ∘ ◡𝐴) |
6 | df-rn 4651 | . 2 ⊢ ran 𝐴 = dom ◡𝐴 | |
7 | 1, 5, 6 | 3sstr4i 3210 | 1 ⊢ ran (𝐴 ∘ 𝐵) ⊆ ran 𝐴 |
Colors of variables: wff set class |
Syntax hints: ⊆ wss 3143 ◡ccnv 4639 dom cdm 4640 ran crn 4641 ∘ ccom 4644 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-14 2162 ax-ext 2170 ax-sep 4135 ax-pow 4188 ax-pr 4223 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-nf 1471 df-sb 1773 df-eu 2040 df-mo 2041 df-clab 2175 df-cleq 2181 df-clel 2184 df-nfc 2320 df-v 2753 df-un 3147 df-in 3149 df-ss 3156 df-pw 3591 df-sn 3612 df-pr 3613 df-op 3615 df-br 4018 df-opab 4079 df-cnv 4648 df-co 4649 df-dm 4650 df-rn 4651 |
This theorem is referenced by: cossxp 5165 fco 5395 caseinj 7105 djuinj 7122 |
Copyright terms: Public domain | W3C validator |