ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rncoss GIF version

Theorem rncoss 4911
Description: Range of a composition. (Contributed by NM, 19-Mar-1998.)
Assertion
Ref Expression
rncoss ran (𝐴𝐵) ⊆ ran 𝐴

Proof of Theorem rncoss
StepHypRef Expression
1 dmcoss 4910 . 2 dom (𝐵𝐴) ⊆ dom 𝐴
2 df-rn 4651 . . 3 ran (𝐴𝐵) = dom (𝐴𝐵)
3 cnvco 4826 . . . 4 (𝐴𝐵) = (𝐵𝐴)
43dmeqi 4842 . . 3 dom (𝐴𝐵) = dom (𝐵𝐴)
52, 4eqtri 2209 . 2 ran (𝐴𝐵) = dom (𝐵𝐴)
6 df-rn 4651 . 2 ran 𝐴 = dom 𝐴
71, 5, 63sstr4i 3210 1 ran (𝐴𝐵) ⊆ ran 𝐴
Colors of variables: wff set class
Syntax hints:  wss 3143  ccnv 4639  dom cdm 4640  ran crn 4641  ccom 4644
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-14 2162  ax-ext 2170  ax-sep 4135  ax-pow 4188  ax-pr 4223
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-eu 2040  df-mo 2041  df-clab 2175  df-cleq 2181  df-clel 2184  df-nfc 2320  df-v 2753  df-un 3147  df-in 3149  df-ss 3156  df-pw 3591  df-sn 3612  df-pr 3613  df-op 3615  df-br 4018  df-opab 4079  df-cnv 4648  df-co 4649  df-dm 4650  df-rn 4651
This theorem is referenced by:  cossxp  5165  fco  5395  caseinj  7105  djuinj  7122
  Copyright terms: Public domain W3C validator