| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rnin | GIF version | ||
| Description: The range of an intersection belongs the intersection of ranges. Theorem 9 of [Suppes] p. 60. (Contributed by NM, 15-Sep-2004.) |
| Ref | Expression |
|---|---|
| rnin | ⊢ ran (𝐴 ∩ 𝐵) ⊆ (ran 𝐴 ∩ ran 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvin 5099 | . . . 4 ⊢ ◡(𝐴 ∩ 𝐵) = (◡𝐴 ∩ ◡𝐵) | |
| 2 | 1 | dmeqi 4888 | . . 3 ⊢ dom ◡(𝐴 ∩ 𝐵) = dom (◡𝐴 ∩ ◡𝐵) |
| 3 | dmin 4895 | . . 3 ⊢ dom (◡𝐴 ∩ ◡𝐵) ⊆ (dom ◡𝐴 ∩ dom ◡𝐵) | |
| 4 | 2, 3 | eqsstri 3229 | . 2 ⊢ dom ◡(𝐴 ∩ 𝐵) ⊆ (dom ◡𝐴 ∩ dom ◡𝐵) |
| 5 | df-rn 4694 | . 2 ⊢ ran (𝐴 ∩ 𝐵) = dom ◡(𝐴 ∩ 𝐵) | |
| 6 | df-rn 4694 | . . 3 ⊢ ran 𝐴 = dom ◡𝐴 | |
| 7 | df-rn 4694 | . . 3 ⊢ ran 𝐵 = dom ◡𝐵 | |
| 8 | 6, 7 | ineq12i 3376 | . 2 ⊢ (ran 𝐴 ∩ ran 𝐵) = (dom ◡𝐴 ∩ dom ◡𝐵) |
| 9 | 4, 5, 8 | 3sstr4i 3238 | 1 ⊢ ran (𝐴 ∩ 𝐵) ⊆ (ran 𝐴 ∩ ran 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ∩ cin 3169 ⊆ wss 3170 ◡ccnv 4682 dom cdm 4683 ran crn 4684 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-br 4052 df-opab 4114 df-xp 4689 df-rel 4690 df-cnv 4691 df-dm 4693 df-rn 4694 |
| This theorem is referenced by: inimass 5108 |
| Copyright terms: Public domain | W3C validator |