ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnin GIF version

Theorem rnin 5013
Description: The range of an intersection belongs the intersection of ranges. Theorem 9 of [Suppes] p. 60. (Contributed by NM, 15-Sep-2004.)
Assertion
Ref Expression
rnin ran (𝐴𝐵) ⊆ (ran 𝐴 ∩ ran 𝐵)

Proof of Theorem rnin
StepHypRef Expression
1 cnvin 5011 . . . 4 (𝐴𝐵) = (𝐴𝐵)
21dmeqi 4805 . . 3 dom (𝐴𝐵) = dom (𝐴𝐵)
3 dmin 4812 . . 3 dom (𝐴𝐵) ⊆ (dom 𝐴 ∩ dom 𝐵)
42, 3eqsstri 3174 . 2 dom (𝐴𝐵) ⊆ (dom 𝐴 ∩ dom 𝐵)
5 df-rn 4615 . 2 ran (𝐴𝐵) = dom (𝐴𝐵)
6 df-rn 4615 . . 3 ran 𝐴 = dom 𝐴
7 df-rn 4615 . . 3 ran 𝐵 = dom 𝐵
86, 7ineq12i 3321 . 2 (ran 𝐴 ∩ ran 𝐵) = (dom 𝐴 ∩ dom 𝐵)
94, 5, 83sstr4i 3183 1 ran (𝐴𝐵) ⊆ (ran 𝐴 ∩ ran 𝐵)
Colors of variables: wff set class
Syntax hints:  cin 3115  wss 3116  ccnv 4603  dom cdm 4604  ran crn 4605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-rel 4611  df-cnv 4612  df-dm 4614  df-rn 4615
This theorem is referenced by:  inimass  5020
  Copyright terms: Public domain W3C validator