ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnin GIF version

Theorem rnin 5076
Description: The range of an intersection belongs the intersection of ranges. Theorem 9 of [Suppes] p. 60. (Contributed by NM, 15-Sep-2004.)
Assertion
Ref Expression
rnin ran (𝐴𝐵) ⊆ (ran 𝐴 ∩ ran 𝐵)

Proof of Theorem rnin
StepHypRef Expression
1 cnvin 5074 . . . 4 (𝐴𝐵) = (𝐴𝐵)
21dmeqi 4864 . . 3 dom (𝐴𝐵) = dom (𝐴𝐵)
3 dmin 4871 . . 3 dom (𝐴𝐵) ⊆ (dom 𝐴 ∩ dom 𝐵)
42, 3eqsstri 3212 . 2 dom (𝐴𝐵) ⊆ (dom 𝐴 ∩ dom 𝐵)
5 df-rn 4671 . 2 ran (𝐴𝐵) = dom (𝐴𝐵)
6 df-rn 4671 . . 3 ran 𝐴 = dom 𝐴
7 df-rn 4671 . . 3 ran 𝐵 = dom 𝐵
86, 7ineq12i 3359 . 2 (ran 𝐴 ∩ ran 𝐵) = (dom 𝐴 ∩ dom 𝐵)
94, 5, 83sstr4i 3221 1 ran (𝐴𝐵) ⊆ (ran 𝐴 ∩ ran 𝐵)
Colors of variables: wff set class
Syntax hints:  cin 3153  wss 3154  ccnv 4659  dom cdm 4660  ran crn 4661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-br 4031  df-opab 4092  df-xp 4666  df-rel 4667  df-cnv 4668  df-dm 4670  df-rn 4671
This theorem is referenced by:  inimass  5083
  Copyright terms: Public domain W3C validator