Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rnin | GIF version |
Description: The range of an intersection belongs the intersection of ranges. Theorem 9 of [Suppes] p. 60. (Contributed by NM, 15-Sep-2004.) |
Ref | Expression |
---|---|
rnin | ⊢ ran (𝐴 ∩ 𝐵) ⊆ (ran 𝐴 ∩ ran 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvin 5018 | . . . 4 ⊢ ◡(𝐴 ∩ 𝐵) = (◡𝐴 ∩ ◡𝐵) | |
2 | 1 | dmeqi 4812 | . . 3 ⊢ dom ◡(𝐴 ∩ 𝐵) = dom (◡𝐴 ∩ ◡𝐵) |
3 | dmin 4819 | . . 3 ⊢ dom (◡𝐴 ∩ ◡𝐵) ⊆ (dom ◡𝐴 ∩ dom ◡𝐵) | |
4 | 2, 3 | eqsstri 3179 | . 2 ⊢ dom ◡(𝐴 ∩ 𝐵) ⊆ (dom ◡𝐴 ∩ dom ◡𝐵) |
5 | df-rn 4622 | . 2 ⊢ ran (𝐴 ∩ 𝐵) = dom ◡(𝐴 ∩ 𝐵) | |
6 | df-rn 4622 | . . 3 ⊢ ran 𝐴 = dom ◡𝐴 | |
7 | df-rn 4622 | . . 3 ⊢ ran 𝐵 = dom ◡𝐵 | |
8 | 6, 7 | ineq12i 3326 | . 2 ⊢ (ran 𝐴 ∩ ran 𝐵) = (dom ◡𝐴 ∩ dom ◡𝐵) |
9 | 4, 5, 8 | 3sstr4i 3188 | 1 ⊢ ran (𝐴 ∩ 𝐵) ⊆ (ran 𝐴 ∩ ran 𝐵) |
Colors of variables: wff set class |
Syntax hints: ∩ cin 3120 ⊆ wss 3121 ◡ccnv 4610 dom cdm 4611 ran crn 4612 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-xp 4617 df-rel 4618 df-cnv 4619 df-dm 4621 df-rn 4622 |
This theorem is referenced by: inimass 5027 |
Copyright terms: Public domain | W3C validator |