Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspcva Unicode version

Theorem rspcva 2759
 Description: Restricted specialization, using implicit substitution. (Contributed by NM, 13-Sep-2005.)
Hypothesis
Ref Expression
rspcv.1
Assertion
Ref Expression
rspcva
Distinct variable groups:   ,   ,   ,
Allowed substitution hint:   ()

Proof of Theorem rspcva
StepHypRef Expression
1 rspcv.1 . . 3
21rspcv 2757 . 2
32imp 123 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 103   wb 104   wceq 1314   wcel 1463  wral 2391 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097 This theorem depends on definitions:  df-bi 116  df-tru 1317  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ral 2396  df-v 2660 This theorem is referenced by:  supmoti  6846  peano2nnnn  7625  squeeze0  8619  peano2nn  8689  nnsub  8716  zextle  9093  rexuz3  10702  cau3lem  10826  caubnd2  10829  climcn1  11017  dvdsext  11449
 Copyright terms: Public domain W3C validator