ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspcva GIF version

Theorem rspcva 2874
Description: Restricted specialization, using implicit substitution. (Contributed by NM, 13-Sep-2005.)
Hypothesis
Ref Expression
rspcv.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
rspcva ((𝐴𝐵 ∧ ∀𝑥𝐵 𝜑) → 𝜓)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rspcva
StepHypRef Expression
1 rspcv.1 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
21rspcv 2872 . 2 (𝐴𝐵 → (∀𝑥𝐵 𝜑𝜓))
32imp 124 1 ((𝐴𝐵 ∧ ∀𝑥𝐵 𝜑) → 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1372  wcel 2175  wral 2483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-v 2773
This theorem is referenced by:  supmoti  7094  peano2nnnn  7965  squeeze0  8976  peano2nn  9047  nnsub  9074  zextle  9463  rexuz3  11243  cau3lem  11367  caubnd2  11370  climcn1  11561  dvdsext  12108  mgmidmo  13146  dfgrp3mlem  13372
  Copyright terms: Public domain W3C validator