ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspcva GIF version

Theorem rspcva 2841
Description: Restricted specialization, using implicit substitution. (Contributed by NM, 13-Sep-2005.)
Hypothesis
Ref Expression
rspcv.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
rspcva ((𝐴𝐵 ∧ ∀𝑥𝐵 𝜑) → 𝜓)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rspcva
StepHypRef Expression
1 rspcv.1 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
21rspcv 2839 . 2 (𝐴𝐵 → (∀𝑥𝐵 𝜑𝜓))
32imp 124 1 ((𝐴𝐵 ∧ ∀𝑥𝐵 𝜑) → 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wcel 2148  wral 2455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-v 2741
This theorem is referenced by:  supmoti  6994  peano2nnnn  7854  squeeze0  8863  peano2nn  8933  nnsub  8960  zextle  9346  rexuz3  11001  cau3lem  11125  caubnd2  11128  climcn1  11318  dvdsext  11863  mgmidmo  12796  dfgrp3mlem  12973
  Copyright terms: Public domain W3C validator