ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspcva GIF version

Theorem rspcva 2866
Description: Restricted specialization, using implicit substitution. (Contributed by NM, 13-Sep-2005.)
Hypothesis
Ref Expression
rspcv.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
rspcva ((𝐴𝐵 ∧ ∀𝑥𝐵 𝜑) → 𝜓)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rspcva
StepHypRef Expression
1 rspcv.1 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
21rspcv 2864 . 2 (𝐴𝐵 → (∀𝑥𝐵 𝜑𝜓))
32imp 124 1 ((𝐴𝐵 ∧ ∀𝑥𝐵 𝜑) → 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  wral 2475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-v 2765
This theorem is referenced by:  supmoti  7059  peano2nnnn  7920  squeeze0  8931  peano2nn  9002  nnsub  9029  zextle  9417  rexuz3  11155  cau3lem  11279  caubnd2  11282  climcn1  11473  dvdsext  12020  mgmidmo  13015  dfgrp3mlem  13230
  Copyright terms: Public domain W3C validator