ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  squeeze0 Unicode version

Theorem squeeze0 8977
Description: If a nonnegative number is less than any positive number, it is zero. (Contributed by NM, 11-Feb-2006.)
Assertion
Ref Expression
squeeze0  |-  ( ( A  e.  RR  /\  0  <_  A  /\  A. x  e.  RR  (
0  <  x  ->  A  <  x ) )  ->  A  =  0 )
Distinct variable group:    x, A

Proof of Theorem squeeze0
StepHypRef Expression
1 ltnr 8149 . . . . 5  |-  ( A  e.  RR  ->  -.  A  <  A )
213ad2ant1 1021 . . . 4  |-  ( ( A  e.  RR  /\  0  <_  A  /\  A. x  e.  RR  (
0  <  x  ->  A  <  x ) )  ->  -.  A  <  A )
3 breq2 4048 . . . . . . 7  |-  ( x  =  A  ->  (
0  <  x  <->  0  <  A ) )
4 breq2 4048 . . . . . . 7  |-  ( x  =  A  ->  ( A  <  x  <->  A  <  A ) )
53, 4imbi12d 234 . . . . . 6  |-  ( x  =  A  ->  (
( 0  <  x  ->  A  <  x )  <-> 
( 0  <  A  ->  A  <  A ) ) )
65rspcva 2875 . . . . 5  |-  ( ( A  e.  RR  /\  A. x  e.  RR  (
0  <  x  ->  A  <  x ) )  ->  ( 0  < 
A  ->  A  <  A ) )
763adant2 1019 . . . 4  |-  ( ( A  e.  RR  /\  0  <_  A  /\  A. x  e.  RR  (
0  <  x  ->  A  <  x ) )  ->  ( 0  < 
A  ->  A  <  A ) )
82, 7mtod 665 . . 3  |-  ( ( A  e.  RR  /\  0  <_  A  /\  A. x  e.  RR  (
0  <  x  ->  A  <  x ) )  ->  -.  0  <  A )
9 simp1 1000 . . . 4  |-  ( ( A  e.  RR  /\  0  <_  A  /\  A. x  e.  RR  (
0  <  x  ->  A  <  x ) )  ->  A  e.  RR )
10 0red 8073 . . . 4  |-  ( ( A  e.  RR  /\  0  <_  A  /\  A. x  e.  RR  (
0  <  x  ->  A  <  x ) )  ->  0  e.  RR )
119, 10lenltd 8190 . . 3  |-  ( ( A  e.  RR  /\  0  <_  A  /\  A. x  e.  RR  (
0  <  x  ->  A  <  x ) )  ->  ( A  <_ 
0  <->  -.  0  <  A ) )
128, 11mpbird 167 . 2  |-  ( ( A  e.  RR  /\  0  <_  A  /\  A. x  e.  RR  (
0  <  x  ->  A  <  x ) )  ->  A  <_  0
)
13 simp2 1001 . 2  |-  ( ( A  e.  RR  /\  0  <_  A  /\  A. x  e.  RR  (
0  <  x  ->  A  <  x ) )  ->  0  <_  A
)
149, 10letri3d 8188 . 2  |-  ( ( A  e.  RR  /\  0  <_  A  /\  A. x  e.  RR  (
0  <  x  ->  A  <  x ) )  ->  ( A  =  0  <->  ( A  <_ 
0  /\  0  <_  A ) ) )
1512, 13, 14mpbir2and 947 1  |-  ( ( A  e.  RR  /\  0  <_  A  /\  A. x  e.  RR  (
0  <  x  ->  A  <  x ) )  ->  A  =  0 )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ w3a 981    = wceq 1373    e. wcel 2176   A.wral 2484   class class class wbr 4044   RRcr 7924   0cc0 7925    < clt 8107    <_ cle 8108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1re 8019  ax-addrcl 8022  ax-rnegex 8034  ax-pre-ltirr 8037  ax-pre-apti 8040
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-xp 4681  df-cnv 4683  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator