ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  squeeze0 Unicode version

Theorem squeeze0 8820
Description: If a nonnegative number is less than any positive number, it is zero. (Contributed by NM, 11-Feb-2006.)
Assertion
Ref Expression
squeeze0  |-  ( ( A  e.  RR  /\  0  <_  A  /\  A. x  e.  RR  (
0  <  x  ->  A  <  x ) )  ->  A  =  0 )
Distinct variable group:    x, A

Proof of Theorem squeeze0
StepHypRef Expression
1 ltnr 7996 . . . . 5  |-  ( A  e.  RR  ->  -.  A  <  A )
213ad2ant1 1013 . . . 4  |-  ( ( A  e.  RR  /\  0  <_  A  /\  A. x  e.  RR  (
0  <  x  ->  A  <  x ) )  ->  -.  A  <  A )
3 breq2 3993 . . . . . . 7  |-  ( x  =  A  ->  (
0  <  x  <->  0  <  A ) )
4 breq2 3993 . . . . . . 7  |-  ( x  =  A  ->  ( A  <  x  <->  A  <  A ) )
53, 4imbi12d 233 . . . . . 6  |-  ( x  =  A  ->  (
( 0  <  x  ->  A  <  x )  <-> 
( 0  <  A  ->  A  <  A ) ) )
65rspcva 2832 . . . . 5  |-  ( ( A  e.  RR  /\  A. x  e.  RR  (
0  <  x  ->  A  <  x ) )  ->  ( 0  < 
A  ->  A  <  A ) )
763adant2 1011 . . . 4  |-  ( ( A  e.  RR  /\  0  <_  A  /\  A. x  e.  RR  (
0  <  x  ->  A  <  x ) )  ->  ( 0  < 
A  ->  A  <  A ) )
82, 7mtod 658 . . 3  |-  ( ( A  e.  RR  /\  0  <_  A  /\  A. x  e.  RR  (
0  <  x  ->  A  <  x ) )  ->  -.  0  <  A )
9 simp1 992 . . . 4  |-  ( ( A  e.  RR  /\  0  <_  A  /\  A. x  e.  RR  (
0  <  x  ->  A  <  x ) )  ->  A  e.  RR )
10 0red 7921 . . . 4  |-  ( ( A  e.  RR  /\  0  <_  A  /\  A. x  e.  RR  (
0  <  x  ->  A  <  x ) )  ->  0  e.  RR )
119, 10lenltd 8037 . . 3  |-  ( ( A  e.  RR  /\  0  <_  A  /\  A. x  e.  RR  (
0  <  x  ->  A  <  x ) )  ->  ( A  <_ 
0  <->  -.  0  <  A ) )
128, 11mpbird 166 . 2  |-  ( ( A  e.  RR  /\  0  <_  A  /\  A. x  e.  RR  (
0  <  x  ->  A  <  x ) )  ->  A  <_  0
)
13 simp2 993 . 2  |-  ( ( A  e.  RR  /\  0  <_  A  /\  A. x  e.  RR  (
0  <  x  ->  A  <  x ) )  ->  0  <_  A
)
149, 10letri3d 8035 . 2  |-  ( ( A  e.  RR  /\  0  <_  A  /\  A. x  e.  RR  (
0  <  x  ->  A  <  x ) )  ->  ( A  =  0  <->  ( A  <_ 
0  /\  0  <_  A ) ) )
1512, 13, 14mpbir2and 939 1  |-  ( ( A  e.  RR  /\  0  <_  A  /\  A. x  e.  RR  (
0  <  x  ->  A  <  x ) )  ->  A  =  0 )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ w3a 973    = wceq 1348    e. wcel 2141   A.wral 2448   class class class wbr 3989   RRcr 7773   0cc0 7774    < clt 7954    <_ cle 7955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1re 7868  ax-addrcl 7871  ax-rnegex 7883  ax-pre-ltirr 7886  ax-pre-apti 7889
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-xp 4617  df-cnv 4619  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator