ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  squeeze0 Unicode version

Theorem squeeze0 8686
Description: If a nonnegative number is less than any positive number, it is zero. (Contributed by NM, 11-Feb-2006.)
Assertion
Ref Expression
squeeze0  |-  ( ( A  e.  RR  /\  0  <_  A  /\  A. x  e.  RR  (
0  <  x  ->  A  <  x ) )  ->  A  =  0 )
Distinct variable group:    x, A

Proof of Theorem squeeze0
StepHypRef Expression
1 ltnr 7865 . . . . 5  |-  ( A  e.  RR  ->  -.  A  <  A )
213ad2ant1 1003 . . . 4  |-  ( ( A  e.  RR  /\  0  <_  A  /\  A. x  e.  RR  (
0  <  x  ->  A  <  x ) )  ->  -.  A  <  A )
3 breq2 3941 . . . . . . 7  |-  ( x  =  A  ->  (
0  <  x  <->  0  <  A ) )
4 breq2 3941 . . . . . . 7  |-  ( x  =  A  ->  ( A  <  x  <->  A  <  A ) )
53, 4imbi12d 233 . . . . . 6  |-  ( x  =  A  ->  (
( 0  <  x  ->  A  <  x )  <-> 
( 0  <  A  ->  A  <  A ) ) )
65rspcva 2791 . . . . 5  |-  ( ( A  e.  RR  /\  A. x  e.  RR  (
0  <  x  ->  A  <  x ) )  ->  ( 0  < 
A  ->  A  <  A ) )
763adant2 1001 . . . 4  |-  ( ( A  e.  RR  /\  0  <_  A  /\  A. x  e.  RR  (
0  <  x  ->  A  <  x ) )  ->  ( 0  < 
A  ->  A  <  A ) )
82, 7mtod 653 . . 3  |-  ( ( A  e.  RR  /\  0  <_  A  /\  A. x  e.  RR  (
0  <  x  ->  A  <  x ) )  ->  -.  0  <  A )
9 simp1 982 . . . 4  |-  ( ( A  e.  RR  /\  0  <_  A  /\  A. x  e.  RR  (
0  <  x  ->  A  <  x ) )  ->  A  e.  RR )
10 0red 7791 . . . 4  |-  ( ( A  e.  RR  /\  0  <_  A  /\  A. x  e.  RR  (
0  <  x  ->  A  <  x ) )  ->  0  e.  RR )
119, 10lenltd 7904 . . 3  |-  ( ( A  e.  RR  /\  0  <_  A  /\  A. x  e.  RR  (
0  <  x  ->  A  <  x ) )  ->  ( A  <_ 
0  <->  -.  0  <  A ) )
128, 11mpbird 166 . 2  |-  ( ( A  e.  RR  /\  0  <_  A  /\  A. x  e.  RR  (
0  <  x  ->  A  <  x ) )  ->  A  <_  0
)
13 simp2 983 . 2  |-  ( ( A  e.  RR  /\  0  <_  A  /\  A. x  e.  RR  (
0  <  x  ->  A  <  x ) )  ->  0  <_  A
)
149, 10letri3d 7903 . 2  |-  ( ( A  e.  RR  /\  0  <_  A  /\  A. x  e.  RR  (
0  <  x  ->  A  <  x ) )  ->  ( A  =  0  <->  ( A  <_ 
0  /\  0  <_  A ) ) )
1512, 13, 14mpbir2and 929 1  |-  ( ( A  e.  RR  /\  0  <_  A  /\  A. x  e.  RR  (
0  <  x  ->  A  <  x ) )  ->  A  =  0 )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ w3a 963    = wceq 1332    e. wcel 1481   A.wral 2417   class class class wbr 3937   RRcr 7643   0cc0 7644    < clt 7824    <_ cle 7825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1re 7738  ax-addrcl 7741  ax-rnegex 7753  ax-pre-ltirr 7756  ax-pre-apti 7759
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2691  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-xp 4553  df-cnv 4555  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator