ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zextle Unicode version

Theorem zextle 9282
Description: An extensionality-like property for integer ordering. (Contributed by NM, 29-Oct-2005.)
Assertion
Ref Expression
zextle  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A. k  e.  ZZ  (
k  <_  M  <->  k  <_  N ) )  ->  M  =  N )
Distinct variable groups:    k, M    k, N

Proof of Theorem zextle
StepHypRef Expression
1 zre 9195 . . . . . . . . 9  |-  ( M  e.  ZZ  ->  M  e.  RR )
21leidd 8412 . . . . . . . 8  |-  ( M  e.  ZZ  ->  M  <_  M )
32adantr 274 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  A. k  e.  ZZ  (
k  <_  M  <->  k  <_  N ) )  ->  M  <_  M )
4 breq1 3985 . . . . . . . . 9  |-  ( k  =  M  ->  (
k  <_  M  <->  M  <_  M ) )
5 breq1 3985 . . . . . . . . 9  |-  ( k  =  M  ->  (
k  <_  N  <->  M  <_  N ) )
64, 5bibi12d 234 . . . . . . . 8  |-  ( k  =  M  ->  (
( k  <_  M  <->  k  <_  N )  <->  ( M  <_  M  <->  M  <_  N ) ) )
76rspcva 2828 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  A. k  e.  ZZ  (
k  <_  M  <->  k  <_  N ) )  ->  ( M  <_  M  <->  M  <_  N ) )
83, 7mpbid 146 . . . . . 6  |-  ( ( M  e.  ZZ  /\  A. k  e.  ZZ  (
k  <_  M  <->  k  <_  N ) )  ->  M  <_  N )
98adantlr 469 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  A. k  e.  ZZ  ( k  <_  M 
<->  k  <_  N )
)  ->  M  <_  N )
10 zre 9195 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  N  e.  RR )
1110leidd 8412 . . . . . . . 8  |-  ( N  e.  ZZ  ->  N  <_  N )
1211adantr 274 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  A. k  e.  ZZ  (
k  <_  M  <->  k  <_  N ) )  ->  N  <_  N )
13 breq1 3985 . . . . . . . . 9  |-  ( k  =  N  ->  (
k  <_  M  <->  N  <_  M ) )
14 breq1 3985 . . . . . . . . 9  |-  ( k  =  N  ->  (
k  <_  N  <->  N  <_  N ) )
1513, 14bibi12d 234 . . . . . . . 8  |-  ( k  =  N  ->  (
( k  <_  M  <->  k  <_  N )  <->  ( N  <_  M  <->  N  <_  N ) ) )
1615rspcva 2828 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  A. k  e.  ZZ  (
k  <_  M  <->  k  <_  N ) )  ->  ( N  <_  M  <->  N  <_  N ) )
1712, 16mpbird 166 . . . . . 6  |-  ( ( N  e.  ZZ  /\  A. k  e.  ZZ  (
k  <_  M  <->  k  <_  N ) )  ->  N  <_  M )
1817adantll 468 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  A. k  e.  ZZ  ( k  <_  M 
<->  k  <_  N )
)  ->  N  <_  M )
199, 18jca 304 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  A. k  e.  ZZ  ( k  <_  M 
<->  k  <_  N )
)  ->  ( M  <_  N  /\  N  <_  M ) )
2019ex 114 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A. k  e.  ZZ  ( k  <_  M 
<->  k  <_  N )  ->  ( M  <_  N  /\  N  <_  M ) ) )
21 letri3 7979 . . . 4  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( M  =  N  <-> 
( M  <_  N  /\  N  <_  M ) ) )
221, 10, 21syl2an 287 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  =  N  <-> 
( M  <_  N  /\  N  <_  M ) ) )
2320, 22sylibrd 168 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A. k  e.  ZZ  ( k  <_  M 
<->  k  <_  N )  ->  M  =  N ) )
24233impia 1190 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A. k  e.  ZZ  (
k  <_  M  <->  k  <_  N ) )  ->  M  =  N )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 968    = wceq 1343    e. wcel 2136   A.wral 2444   class class class wbr 3982   RRcr 7752    <_ cle 7934   ZZcz 9191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-pre-ltirr 7865  ax-pre-apti 7868
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-xp 4610  df-cnv 4612  df-iota 5153  df-fv 5196  df-ov 5845  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-neg 8072  df-z 9192
This theorem is referenced by:  zextlt  9283
  Copyright terms: Public domain W3C validator