ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zextle Unicode version

Theorem zextle 9538
Description: An extensionality-like property for integer ordering. (Contributed by NM, 29-Oct-2005.)
Assertion
Ref Expression
zextle  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A. k  e.  ZZ  (
k  <_  M  <->  k  <_  N ) )  ->  M  =  N )
Distinct variable groups:    k, M    k, N

Proof of Theorem zextle
StepHypRef Expression
1 zre 9450 . . . . . . . . 9  |-  ( M  e.  ZZ  ->  M  e.  RR )
21leidd 8661 . . . . . . . 8  |-  ( M  e.  ZZ  ->  M  <_  M )
32adantr 276 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  A. k  e.  ZZ  (
k  <_  M  <->  k  <_  N ) )  ->  M  <_  M )
4 breq1 4086 . . . . . . . . 9  |-  ( k  =  M  ->  (
k  <_  M  <->  M  <_  M ) )
5 breq1 4086 . . . . . . . . 9  |-  ( k  =  M  ->  (
k  <_  N  <->  M  <_  N ) )
64, 5bibi12d 235 . . . . . . . 8  |-  ( k  =  M  ->  (
( k  <_  M  <->  k  <_  N )  <->  ( M  <_  M  <->  M  <_  N ) ) )
76rspcva 2905 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  A. k  e.  ZZ  (
k  <_  M  <->  k  <_  N ) )  ->  ( M  <_  M  <->  M  <_  N ) )
83, 7mpbid 147 . . . . . 6  |-  ( ( M  e.  ZZ  /\  A. k  e.  ZZ  (
k  <_  M  <->  k  <_  N ) )  ->  M  <_  N )
98adantlr 477 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  A. k  e.  ZZ  ( k  <_  M 
<->  k  <_  N )
)  ->  M  <_  N )
10 zre 9450 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  N  e.  RR )
1110leidd 8661 . . . . . . . 8  |-  ( N  e.  ZZ  ->  N  <_  N )
1211adantr 276 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  A. k  e.  ZZ  (
k  <_  M  <->  k  <_  N ) )  ->  N  <_  N )
13 breq1 4086 . . . . . . . . 9  |-  ( k  =  N  ->  (
k  <_  M  <->  N  <_  M ) )
14 breq1 4086 . . . . . . . . 9  |-  ( k  =  N  ->  (
k  <_  N  <->  N  <_  N ) )
1513, 14bibi12d 235 . . . . . . . 8  |-  ( k  =  N  ->  (
( k  <_  M  <->  k  <_  N )  <->  ( N  <_  M  <->  N  <_  N ) ) )
1615rspcva 2905 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  A. k  e.  ZZ  (
k  <_  M  <->  k  <_  N ) )  ->  ( N  <_  M  <->  N  <_  N ) )
1712, 16mpbird 167 . . . . . 6  |-  ( ( N  e.  ZZ  /\  A. k  e.  ZZ  (
k  <_  M  <->  k  <_  N ) )  ->  N  <_  M )
1817adantll 476 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  A. k  e.  ZZ  ( k  <_  M 
<->  k  <_  N )
)  ->  N  <_  M )
199, 18jca 306 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  A. k  e.  ZZ  ( k  <_  M 
<->  k  <_  N )
)  ->  ( M  <_  N  /\  N  <_  M ) )
2019ex 115 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A. k  e.  ZZ  ( k  <_  M 
<->  k  <_  N )  ->  ( M  <_  N  /\  N  <_  M ) ) )
21 letri3 8227 . . . 4  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( M  =  N  <-> 
( M  <_  N  /\  N  <_  M ) ) )
221, 10, 21syl2an 289 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  =  N  <-> 
( M  <_  N  /\  N  <_  M ) ) )
2320, 22sylibrd 169 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A. k  e.  ZZ  ( k  <_  M 
<->  k  <_  N )  ->  M  =  N ) )
24233impia 1224 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A. k  e.  ZZ  (
k  <_  M  <->  k  <_  N ) )  ->  M  =  N )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395    e. wcel 2200   A.wral 2508   class class class wbr 4083   RRcr 7998    <_ cle 8182   ZZcz 9446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-pre-ltirr 8111  ax-pre-apti 8114
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-xp 4725  df-cnv 4727  df-iota 5278  df-fv 5326  df-ov 6004  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-neg 8320  df-z 9447
This theorem is referenced by:  zextlt  9539
  Copyright terms: Public domain W3C validator