ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zextle Unicode version

Theorem zextle 9303
Description: An extensionality-like property for integer ordering. (Contributed by NM, 29-Oct-2005.)
Assertion
Ref Expression
zextle  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A. k  e.  ZZ  (
k  <_  M  <->  k  <_  N ) )  ->  M  =  N )
Distinct variable groups:    k, M    k, N

Proof of Theorem zextle
StepHypRef Expression
1 zre 9216 . . . . . . . . 9  |-  ( M  e.  ZZ  ->  M  e.  RR )
21leidd 8433 . . . . . . . 8  |-  ( M  e.  ZZ  ->  M  <_  M )
32adantr 274 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  A. k  e.  ZZ  (
k  <_  M  <->  k  <_  N ) )  ->  M  <_  M )
4 breq1 3992 . . . . . . . . 9  |-  ( k  =  M  ->  (
k  <_  M  <->  M  <_  M ) )
5 breq1 3992 . . . . . . . . 9  |-  ( k  =  M  ->  (
k  <_  N  <->  M  <_  N ) )
64, 5bibi12d 234 . . . . . . . 8  |-  ( k  =  M  ->  (
( k  <_  M  <->  k  <_  N )  <->  ( M  <_  M  <->  M  <_  N ) ) )
76rspcva 2832 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  A. k  e.  ZZ  (
k  <_  M  <->  k  <_  N ) )  ->  ( M  <_  M  <->  M  <_  N ) )
83, 7mpbid 146 . . . . . 6  |-  ( ( M  e.  ZZ  /\  A. k  e.  ZZ  (
k  <_  M  <->  k  <_  N ) )  ->  M  <_  N )
98adantlr 474 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  A. k  e.  ZZ  ( k  <_  M 
<->  k  <_  N )
)  ->  M  <_  N )
10 zre 9216 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  N  e.  RR )
1110leidd 8433 . . . . . . . 8  |-  ( N  e.  ZZ  ->  N  <_  N )
1211adantr 274 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  A. k  e.  ZZ  (
k  <_  M  <->  k  <_  N ) )  ->  N  <_  N )
13 breq1 3992 . . . . . . . . 9  |-  ( k  =  N  ->  (
k  <_  M  <->  N  <_  M ) )
14 breq1 3992 . . . . . . . . 9  |-  ( k  =  N  ->  (
k  <_  N  <->  N  <_  N ) )
1513, 14bibi12d 234 . . . . . . . 8  |-  ( k  =  N  ->  (
( k  <_  M  <->  k  <_  N )  <->  ( N  <_  M  <->  N  <_  N ) ) )
1615rspcva 2832 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  A. k  e.  ZZ  (
k  <_  M  <->  k  <_  N ) )  ->  ( N  <_  M  <->  N  <_  N ) )
1712, 16mpbird 166 . . . . . 6  |-  ( ( N  e.  ZZ  /\  A. k  e.  ZZ  (
k  <_  M  <->  k  <_  N ) )  ->  N  <_  M )
1817adantll 473 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  A. k  e.  ZZ  ( k  <_  M 
<->  k  <_  N )
)  ->  N  <_  M )
199, 18jca 304 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  A. k  e.  ZZ  ( k  <_  M 
<->  k  <_  N )
)  ->  ( M  <_  N  /\  N  <_  M ) )
2019ex 114 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A. k  e.  ZZ  ( k  <_  M 
<->  k  <_  N )  ->  ( M  <_  N  /\  N  <_  M ) ) )
21 letri3 8000 . . . 4  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( M  =  N  <-> 
( M  <_  N  /\  N  <_  M ) ) )
221, 10, 21syl2an 287 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  =  N  <-> 
( M  <_  N  /\  N  <_  M ) ) )
2320, 22sylibrd 168 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A. k  e.  ZZ  ( k  <_  M 
<->  k  <_  N )  ->  M  =  N ) )
24233impia 1195 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A. k  e.  ZZ  (
k  <_  M  <->  k  <_  N ) )  ->  M  =  N )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 973    = wceq 1348    e. wcel 2141   A.wral 2448   class class class wbr 3989   RRcr 7773    <_ cle 7955   ZZcz 9212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-pre-ltirr 7886  ax-pre-apti 7889
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-xp 4617  df-cnv 4619  df-iota 5160  df-fv 5206  df-ov 5856  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-neg 8093  df-z 9213
This theorem is referenced by:  zextlt  9304
  Copyright terms: Public domain W3C validator