Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > zextle | Unicode version |
Description: An extensionality-like property for integer ordering. (Contributed by NM, 29-Oct-2005.) |
Ref | Expression |
---|---|
zextle |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zre 9195 | . . . . . . . . 9 | |
2 | 1 | leidd 8412 | . . . . . . . 8 |
3 | 2 | adantr 274 | . . . . . . 7 |
4 | breq1 3985 | . . . . . . . . 9 | |
5 | breq1 3985 | . . . . . . . . 9 | |
6 | 4, 5 | bibi12d 234 | . . . . . . . 8 |
7 | 6 | rspcva 2828 | . . . . . . 7 |
8 | 3, 7 | mpbid 146 | . . . . . 6 |
9 | 8 | adantlr 469 | . . . . 5 |
10 | zre 9195 | . . . . . . . . 9 | |
11 | 10 | leidd 8412 | . . . . . . . 8 |
12 | 11 | adantr 274 | . . . . . . 7 |
13 | breq1 3985 | . . . . . . . . 9 | |
14 | breq1 3985 | . . . . . . . . 9 | |
15 | 13, 14 | bibi12d 234 | . . . . . . . 8 |
16 | 15 | rspcva 2828 | . . . . . . 7 |
17 | 12, 16 | mpbird 166 | . . . . . 6 |
18 | 17 | adantll 468 | . . . . 5 |
19 | 9, 18 | jca 304 | . . . 4 |
20 | 19 | ex 114 | . . 3 |
21 | letri3 7979 | . . . 4 | |
22 | 1, 10, 21 | syl2an 287 | . . 3 |
23 | 20, 22 | sylibrd 168 | . 2 |
24 | 23 | 3impia 1190 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 968 wceq 1343 wcel 2136 wral 2444 class class class wbr 3982 cr 7752 cle 7934 cz 9191 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-pre-ltirr 7865 ax-pre-apti 7868 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-xp 4610 df-cnv 4612 df-iota 5153 df-fv 5196 df-ov 5845 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-neg 8072 df-z 9192 |
This theorem is referenced by: zextlt 9283 |
Copyright terms: Public domain | W3C validator |