ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zextle Unicode version

Theorem zextle 8837
Description: An extensionality-like property for integer ordering. (Contributed by NM, 29-Oct-2005.)
Assertion
Ref Expression
zextle  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A. k  e.  ZZ  (
k  <_  M  <->  k  <_  N ) )  ->  M  =  N )
Distinct variable groups:    k, M    k, N

Proof of Theorem zextle
StepHypRef Expression
1 zre 8754 . . . . . . . . 9  |-  ( M  e.  ZZ  ->  M  e.  RR )
21leidd 7992 . . . . . . . 8  |-  ( M  e.  ZZ  ->  M  <_  M )
32adantr 270 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  A. k  e.  ZZ  (
k  <_  M  <->  k  <_  N ) )  ->  M  <_  M )
4 breq1 3848 . . . . . . . . 9  |-  ( k  =  M  ->  (
k  <_  M  <->  M  <_  M ) )
5 breq1 3848 . . . . . . . . 9  |-  ( k  =  M  ->  (
k  <_  N  <->  M  <_  N ) )
64, 5bibi12d 233 . . . . . . . 8  |-  ( k  =  M  ->  (
( k  <_  M  <->  k  <_  N )  <->  ( M  <_  M  <->  M  <_  N ) ) )
76rspcva 2720 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  A. k  e.  ZZ  (
k  <_  M  <->  k  <_  N ) )  ->  ( M  <_  M  <->  M  <_  N ) )
83, 7mpbid 145 . . . . . 6  |-  ( ( M  e.  ZZ  /\  A. k  e.  ZZ  (
k  <_  M  <->  k  <_  N ) )  ->  M  <_  N )
98adantlr 461 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  A. k  e.  ZZ  ( k  <_  M 
<->  k  <_  N )
)  ->  M  <_  N )
10 zre 8754 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  N  e.  RR )
1110leidd 7992 . . . . . . . 8  |-  ( N  e.  ZZ  ->  N  <_  N )
1211adantr 270 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  A. k  e.  ZZ  (
k  <_  M  <->  k  <_  N ) )  ->  N  <_  N )
13 breq1 3848 . . . . . . . . 9  |-  ( k  =  N  ->  (
k  <_  M  <->  N  <_  M ) )
14 breq1 3848 . . . . . . . . 9  |-  ( k  =  N  ->  (
k  <_  N  <->  N  <_  N ) )
1513, 14bibi12d 233 . . . . . . . 8  |-  ( k  =  N  ->  (
( k  <_  M  <->  k  <_  N )  <->  ( N  <_  M  <->  N  <_  N ) ) )
1615rspcva 2720 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  A. k  e.  ZZ  (
k  <_  M  <->  k  <_  N ) )  ->  ( N  <_  M  <->  N  <_  N ) )
1712, 16mpbird 165 . . . . . 6  |-  ( ( N  e.  ZZ  /\  A. k  e.  ZZ  (
k  <_  M  <->  k  <_  N ) )  ->  N  <_  M )
1817adantll 460 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  A. k  e.  ZZ  ( k  <_  M 
<->  k  <_  N )
)  ->  N  <_  M )
199, 18jca 300 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  A. k  e.  ZZ  ( k  <_  M 
<->  k  <_  N )
)  ->  ( M  <_  N  /\  N  <_  M ) )
2019ex 113 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A. k  e.  ZZ  ( k  <_  M 
<->  k  <_  N )  ->  ( M  <_  N  /\  N  <_  M ) ) )
21 letri3 7566 . . . 4  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( M  =  N  <-> 
( M  <_  N  /\  N  <_  M ) ) )
221, 10, 21syl2an 283 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  =  N  <-> 
( M  <_  N  /\  N  <_  M ) ) )
2320, 22sylibrd 167 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A. k  e.  ZZ  ( k  <_  M 
<->  k  <_  N )  ->  M  =  N ) )
24233impia 1140 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A. k  e.  ZZ  (
k  <_  M  <->  k  <_  N ) )  ->  M  =  N )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    /\ w3a 924    = wceq 1289    e. wcel 1438   A.wral 2359   class class class wbr 3845   RRcr 7349    <_ cle 7523   ZZcz 8750
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3957  ax-pow 4009  ax-pr 4036  ax-un 4260  ax-setind 4353  ax-cnex 7436  ax-resscn 7437  ax-pre-ltirr 7457  ax-pre-apti 7460
This theorem depends on definitions:  df-bi 115  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-rab 2368  df-v 2621  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-br 3846  df-opab 3900  df-xp 4444  df-cnv 4446  df-iota 4980  df-fv 5023  df-ov 5655  df-pnf 7524  df-mnf 7525  df-xr 7526  df-ltxr 7527  df-le 7528  df-neg 7656  df-z 8751
This theorem is referenced by:  zextlt  8838
  Copyright terms: Public domain W3C validator