ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  s1dmg Unicode version

Theorem s1dmg 11153
Description: The domain of a singleton word is a singleton. (Contributed by AV, 9-Jan-2020.)
Assertion
Ref Expression
s1dmg  |-  ( A  e.  S  ->  dom  <" A ">  =  { 0 } )

Proof of Theorem s1dmg
StepHypRef Expression
1 s1val 11145 . . 3  |-  ( A  e.  S  ->  <" A ">  =  { <. 0 ,  A >. } )
21dmeqd 4924 . 2  |-  ( A  e.  S  ->  dom  <" A ">  =  dom  { <. 0 ,  A >. } )
3 dmsnopg 5199 . 2  |-  ( A  e.  S  ->  dom  {
<. 0 ,  A >. }  =  { 0 } )
42, 3eqtrd 2262 1  |-  ( A  e.  S  ->  dom  <" A ">  =  { 0 } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200   {csn 3666   <.cop 3669   dom cdm 4718   0cc0 7995   <"cs1 11143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-iota 5277  df-fun 5319  df-fv 5325  df-s1 11144
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator