ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  s1dmg GIF version

Theorem s1dmg 11102
Description: The domain of a singleton word is a singleton. (Contributed by AV, 9-Jan-2020.)
Assertion
Ref Expression
s1dmg (𝐴𝑆 → dom ⟨“𝐴”⟩ = {0})

Proof of Theorem s1dmg
StepHypRef Expression
1 s1val 11094 . . 3 (𝐴𝑆 → ⟨“𝐴”⟩ = {⟨0, 𝐴⟩})
21dmeqd 4889 . 2 (𝐴𝑆 → dom ⟨“𝐴”⟩ = dom {⟨0, 𝐴⟩})
3 dmsnopg 5163 . 2 (𝐴𝑆 → dom {⟨0, 𝐴⟩} = {0})
42, 3eqtrd 2239 1 (𝐴𝑆 → dom ⟨“𝐴”⟩ = {0})
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wcel 2177  {csn 3638  cop 3641  dom cdm 4683  0cc0 7945  ⟨“cs1 11092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3003  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-iota 5241  df-fun 5282  df-fv 5288  df-s1 11093
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator