ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  s1val Unicode version

Theorem s1val 11145
Description: Value of a singleton word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
Assertion
Ref Expression
s1val  |-  ( A  e.  V  ->  <" A ">  =  { <. 0 ,  A >. } )

Proof of Theorem s1val
StepHypRef Expression
1 df-s1 11144 . 2  |-  <" A ">  =  { <. 0 ,  (  _I  `  A ) >. }
2 fvi 5690 . . . 4  |-  ( A  e.  V  ->  (  _I  `  A )  =  A )
32opeq2d 3863 . . 3  |-  ( A  e.  V  ->  <. 0 ,  (  _I  `  A
) >.  =  <. 0 ,  A >. )
43sneqd 3679 . 2  |-  ( A  e.  V  ->  { <. 0 ,  (  _I  `  A ) >. }  =  { <. 0 ,  A >. } )
51, 4eqtrid 2274 1  |-  ( A  e.  V  ->  <" A ">  =  { <. 0 ,  A >. } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200   {csn 3666   <.cop 3669    _I cid 4378   ` cfv 5317   0cc0 7995   <"cs1 11143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-iota 5277  df-fun 5319  df-fv 5325  df-s1 11144
This theorem is referenced by:  s1rn  11146  s1cl  11149  s1prc  11151  s1leng  11152  s1dmg  11153  s1fv  11154  s111  11159
  Copyright terms: Public domain W3C validator