ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seqeq123d Unicode version

Theorem seqeq123d 10013
Description: Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.)
Hypotheses
Ref Expression
seqeq123d.1  |-  ( ph  ->  M  =  N )
seqeq123d.2  |-  ( ph  ->  .+  =  Q )
seqeq123d.3  |-  ( ph  ->  F  =  G )
Assertion
Ref Expression
seqeq123d  |-  ( ph  ->  seq M (  .+  ,  F )  =  seq N ( Q ,  G ) )

Proof of Theorem seqeq123d
StepHypRef Expression
1 seqeq123d.1 . . 3  |-  ( ph  ->  M  =  N )
21seqeq1d 10010 . 2  |-  ( ph  ->  seq M (  .+  ,  F )  =  seq N (  .+  ,  F ) )
3 seqeq123d.2 . . 3  |-  ( ph  ->  .+  =  Q )
43seqeq2d 10011 . 2  |-  ( ph  ->  seq N (  .+  ,  F )  =  seq N ( Q ,  F ) )
5 seqeq123d.3 . . 3  |-  ( ph  ->  F  =  G )
65seqeq3d 10012 . 2  |-  ( ph  ->  seq N ( Q ,  F )  =  seq N ( Q ,  G ) )
72, 4, 63eqtrd 2131 1  |-  ( ph  ->  seq M (  .+  ,  F )  =  seq N ( Q ,  G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1296    seqcseq 10001
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077
This theorem depends on definitions:  df-bi 116  df-3an 929  df-tru 1299  df-nf 1402  df-sb 1700  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ral 2375  df-rex 2376  df-v 2635  df-un 3017  df-in 3019  df-ss 3026  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-br 3868  df-opab 3922  df-mpt 3923  df-cnv 4475  df-dm 4477  df-rn 4478  df-res 4479  df-iota 5014  df-fv 5057  df-ov 5693  df-oprab 5694  df-mpt2 5695  df-recs 6108  df-frec 6194  df-iseq 10002  df-seq3 10003
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator