ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seqeq123d Unicode version

Theorem seqeq123d 10389
Description: Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.)
Hypotheses
Ref Expression
seqeq123d.1  |-  ( ph  ->  M  =  N )
seqeq123d.2  |-  ( ph  ->  .+  =  Q )
seqeq123d.3  |-  ( ph  ->  F  =  G )
Assertion
Ref Expression
seqeq123d  |-  ( ph  ->  seq M (  .+  ,  F )  =  seq N ( Q ,  G ) )

Proof of Theorem seqeq123d
StepHypRef Expression
1 seqeq123d.1 . . 3  |-  ( ph  ->  M  =  N )
21seqeq1d 10386 . 2  |-  ( ph  ->  seq M (  .+  ,  F )  =  seq N (  .+  ,  F ) )
3 seqeq123d.2 . . 3  |-  ( ph  ->  .+  =  Q )
43seqeq2d 10387 . 2  |-  ( ph  ->  seq N (  .+  ,  F )  =  seq N ( Q ,  F ) )
5 seqeq123d.3 . . 3  |-  ( ph  ->  F  =  G )
65seqeq3d 10388 . 2  |-  ( ph  ->  seq N ( Q ,  F )  =  seq N ( Q ,  G ) )
72, 4, 63eqtrd 2202 1  |-  ( ph  ->  seq M (  .+  ,  F )  =  seq N ( Q ,  G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    seqcseq 10380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-cnv 4612  df-dm 4614  df-rn 4615  df-res 4616  df-iota 5153  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-recs 6273  df-frec 6359  df-seqfrec 10381
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator