ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seqeq123d Unicode version

Theorem seqeq123d 10565
Description: Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.)
Hypotheses
Ref Expression
seqeq123d.1  |-  ( ph  ->  M  =  N )
seqeq123d.2  |-  ( ph  ->  .+  =  Q )
seqeq123d.3  |-  ( ph  ->  F  =  G )
Assertion
Ref Expression
seqeq123d  |-  ( ph  ->  seq M (  .+  ,  F )  =  seq N ( Q ,  G ) )

Proof of Theorem seqeq123d
StepHypRef Expression
1 seqeq123d.1 . . 3  |-  ( ph  ->  M  =  N )
21seqeq1d 10562 . 2  |-  ( ph  ->  seq M (  .+  ,  F )  =  seq N (  .+  ,  F ) )
3 seqeq123d.2 . . 3  |-  ( ph  ->  .+  =  Q )
43seqeq2d 10563 . 2  |-  ( ph  ->  seq N (  .+  ,  F )  =  seq N ( Q ,  F ) )
5 seqeq123d.3 . . 3  |-  ( ph  ->  F  =  G )
65seqeq3d 10564 . 2  |-  ( ph  ->  seq N ( Q ,  F )  =  seq N ( Q ,  G ) )
72, 4, 63eqtrd 2233 1  |-  ( ph  ->  seq M (  .+  ,  F )  =  seq N ( Q ,  G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    seqcseq 10556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-mpt 4097  df-cnv 4672  df-dm 4674  df-rn 4675  df-res 4676  df-iota 5220  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-recs 6372  df-frec 6458  df-seqfrec 10557
This theorem is referenced by:  igsumvalx  13091
  Copyright terms: Public domain W3C validator