ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seqeq1d Unicode version

Theorem seqeq1d 10481
Description: Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.)
Hypothesis
Ref Expression
seqeqd.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
seqeq1d  |-  ( ph  ->  seq A (  .+  ,  F )  =  seq B (  .+  ,  F ) )

Proof of Theorem seqeq1d
StepHypRef Expression
1 seqeqd.1 . 2  |-  ( ph  ->  A  =  B )
2 seqeq1 10478 . 2  |-  ( A  =  B  ->  seq A (  .+  ,  F )  =  seq B (  .+  ,  F ) )
31, 2syl 14 1  |-  ( ph  ->  seq A (  .+  ,  F )  =  seq B (  .+  ,  F ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    seqcseq 10475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-un 3148  df-in 3150  df-ss 3157  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-mpt 4081  df-cnv 4652  df-dm 4654  df-rn 4655  df-res 4656  df-iota 5196  df-fv 5243  df-oprab 5899  df-mpo 5900  df-recs 6329  df-frec 6415  df-seqfrec 10476
This theorem is referenced by:  seqeq123d  10484  seq3f1olemqsum  10530  bcval5  10774  bcn2  10775  seq3shft  10878  iserex  11378  iser3shft  11385  isumsplit  11530  ntrivcvgap  11587  eftlub  11729  mulgnndir  13088
  Copyright terms: Public domain W3C validator