ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seqeq1d Unicode version

Theorem seqeq1d 10635
Description: Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.)
Hypothesis
Ref Expression
seqeqd.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
seqeq1d  |-  ( ph  ->  seq A (  .+  ,  F )  =  seq B (  .+  ,  F ) )

Proof of Theorem seqeq1d
StepHypRef Expression
1 seqeqd.1 . 2  |-  ( ph  ->  A  =  B )
2 seqeq1 10632 . 2  |-  ( A  =  B  ->  seq A (  .+  ,  F )  =  seq B (  .+  ,  F ) )
31, 2syl 14 1  |-  ( ph  ->  seq A (  .+  ,  F )  =  seq B (  .+  ,  F ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    seqcseq 10629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-mpt 4123  df-cnv 4701  df-dm 4703  df-rn 4704  df-res 4705  df-iota 5251  df-fv 5298  df-oprab 5971  df-mpo 5972  df-recs 6414  df-frec 6500  df-seqfrec 10630
This theorem is referenced by:  seqeq123d  10638  seq3f1olemqsum  10695  seqf1oglem2  10702  bcval5  10945  bcn2  10946  seq3shft  11264  iserex  11765  iser3shft  11772  isumsplit  11917  ntrivcvgap  11974  eftlub  12116  gsumfzval  13338  gsumval2  13344  mulgnndir  13602
  Copyright terms: Public domain W3C validator