HomeHome Intuitionistic Logic Explorer
Theorem List (p. 105 of 132)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 10401-10500   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremnnexpcld 10401 Closure of exponentiation of nonnegative integers. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  NN )   &    |-  ( ph  ->  N  e.  NN0 )   =>    |-  ( ph  ->  ( A ^ N )  e. 
 NN )
 
Theoremnn0expcld 10402 Closure of exponentiation of nonnegative integers. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  NN0 )   &    |-  ( ph  ->  N  e.  NN0 )   =>    |-  ( ph  ->  ( A ^ N )  e. 
 NN0 )
 
Theoremrpexpcld 10403 Closure law for exponentiation of positive reals. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  N  e.  ZZ )   =>    |-  ( ph  ->  ( A ^ N )  e.  RR+ )
 
Theoremreexpclzapd 10404 Closure of exponentiation of reals. (Contributed by Jim Kingdon, 13-Jun-2020.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  A #  0 )   &    |-  ( ph  ->  N  e.  ZZ )   =>    |-  ( ph  ->  ( A ^ N )  e.  RR )
 
Theoremresqcld 10405 Closure of square in reals. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   =>    |-  ( ph  ->  ( A ^ 2 )  e. 
 RR )
 
Theoremsqge0d 10406 A square of a real is nonnegative. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   =>    |-  ( ph  ->  0  <_  ( A ^ 2
 ) )
 
Theoremsqgt0apd 10407 The square of a real apart from zero is positive. (Contributed by Jim Kingdon, 13-Jun-2020.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  A #  0 )   =>    |-  ( ph  ->  0  <  ( A ^ 2
 ) )
 
Theoremleexp2ad 10408 Ordering relationship for exponentiation. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  1 
 <_  A )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )   =>    |-  ( ph  ->  ( A ^ M )  <_  ( A ^ N ) )
 
Theoremleexp2rd 10409 Ordering relationship for exponentiation. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  M  e.  NN0 )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )   &    |-  ( ph  ->  0 
 <_  A )   &    |-  ( ph  ->  A 
 <_  1 )   =>    |-  ( ph  ->  ( A ^ N )  <_  ( A ^ M ) )
 
Theoremlt2sqd 10410 The square function on nonnegative reals is strictly monotonic. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  0  <_  A )   &    |-  ( ph  ->  0  <_  B )   =>    |-  ( ph  ->  ( A  <  B  <->  ( A ^
 2 )  <  ( B ^ 2 ) ) )
 
Theoremle2sqd 10411 The square function on nonnegative reals is monotonic. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  0  <_  A )   &    |-  ( ph  ->  0  <_  B )   =>    |-  ( ph  ->  ( A  <_  B  <->  ( A ^
 2 )  <_  ( B ^ 2 ) ) )
 
Theoremsq11d 10412 The square function is one-to-one for nonnegative reals. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  0  <_  A )   &    |-  ( ph  ->  0  <_  B )   &    |-  ( ph  ->  ( A ^ 2 )  =  ( B ^
 2 ) )   =>    |-  ( ph  ->  A  =  B )
 
Theoremsq11ap 10413 Analogue to sq11 10320 but for apartness. (Contributed by Jim Kingdon, 12-Aug-2021.)
 |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  ->  ( ( A ^
 2 ) #  ( B ^ 2 )  <->  A #  B )
 )
 
Theoremsq10 10414 The square of 10 is 100. (Contributed by AV, 14-Jun-2021.) (Revised by AV, 1-Aug-2021.)
 |-  (; 1 0 ^ 2
 )  = ;; 1 0 0
 
Theoremsq10e99m1 10415 The square of 10 is 99 plus 1. (Contributed by AV, 14-Jun-2021.) (Revised by AV, 1-Aug-2021.)
 |-  (; 1 0 ^ 2
 )  =  (; 9 9  +  1 )
 
Theorem3dec 10416 A "decimal constructor" which is used to build up "decimal integers" or "numeric terms" in base 10 with 3 "digits". (Contributed by AV, 14-Jun-2021.) (Revised by AV, 1-Aug-2021.)
 |-  A  e.  NN0   &    |-  B  e.  NN0   =>    |- ;; A B C  =  ( ( ( (; 1
 0 ^ 2 )  x.  A )  +  (; 1 0  x.  B ) )  +  C )
 
Theoremexpcanlem 10417 Lemma for expcan 10418. Proving the order in one direction. (Contributed by Jim Kingdon, 29-Jan-2022.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ph  ->  1  <  A )   =>    |-  ( ph  ->  (
 ( A ^ M )  <_  ( A ^ N )  ->  M  <_  N ) )
 
Theoremexpcan 10418 Cancellation law for exponentiation. (Contributed by NM, 2-Aug-2006.) (Revised by Mario Carneiro, 4-Jun-2014.)
 |-  ( ( ( A  e.  RR  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  1  <  A )  ->  (
 ( A ^ M )  =  ( A ^ N )  <->  M  =  N ) )
 
Theoremexpcand 10419 Ordering relationship for exponentiation. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ph  ->  1  <  A )   &    |-  ( ph  ->  ( A ^ M )  =  ( A ^ N ) )   =>    |-  ( ph  ->  M  =  N )
 
4.6.7  Ordered pair theorem for nonnegative integers
 
Theoremnn0le2msqd 10420 The square function on nonnegative integers is monotonic. (Contributed by Jim Kingdon, 31-Oct-2021.)
 |-  ( ph  ->  A  e.  NN0 )   &    |-  ( ph  ->  B  e.  NN0 )   =>    |-  ( ph  ->  ( A  <_  B  <->  ( A  x.  A )  <_  ( B  x.  B ) ) )
 
Theoremnn0opthlem1d 10421 A rather pretty lemma for nn0opth2 10425. (Contributed by Jim Kingdon, 31-Oct-2021.)
 |-  ( ph  ->  A  e.  NN0 )   &    |-  ( ph  ->  C  e.  NN0 )   =>    |-  ( ph  ->  ( A  <  C  <->  ( ( A  x.  A )  +  ( 2  x.  A ) )  <  ( C  x.  C ) ) )
 
Theoremnn0opthlem2d 10422 Lemma for nn0opth2 10425. (Contributed by Jim Kingdon, 31-Oct-2021.)
 |-  ( ph  ->  A  e.  NN0 )   &    |-  ( ph  ->  B  e.  NN0 )   &    |-  ( ph  ->  C  e.  NN0 )   &    |-  ( ph  ->  D  e.  NN0 )   =>    |-  ( ph  ->  (
 ( A  +  B )  <  C  ->  (
 ( C  x.  C )  +  D )  =/=  ( ( ( A  +  B )  x.  ( A  +  B ) )  +  B ) ) )
 
Theoremnn0opthd 10423 An ordered pair theorem for nonnegative integers. Theorem 17.3 of [Quine] p. 124. We can represent an ordered pair of nonnegative integers  A and  B by  (
( ( A  +  B )  x.  ( A  +  B )
)  +  B ). If two such ordered pairs are equal, their first elements are equal and their second elements are equal. Contrast this ordered pair representation with the standard one df-op 3506 that works for any set. (Contributed by Jim Kingdon, 31-Oct-2021.)
 |-  ( ph  ->  A  e.  NN0 )   &    |-  ( ph  ->  B  e.  NN0 )   &    |-  ( ph  ->  C  e.  NN0 )   &    |-  ( ph  ->  D  e.  NN0 )   =>    |-  ( ph  ->  (
 ( ( ( A  +  B )  x.  ( A  +  B ) )  +  B )  =  ( (
 ( C  +  D )  x.  ( C  +  D ) )  +  D )  <->  ( A  =  C  /\  B  =  D ) ) )
 
Theoremnn0opth2d 10424 An ordered pair theorem for nonnegative integers. Theorem 17.3 of [Quine] p. 124. See comments for nn0opthd 10423. (Contributed by Jim Kingdon, 31-Oct-2021.)
 |-  ( ph  ->  A  e.  NN0 )   &    |-  ( ph  ->  B  e.  NN0 )   &    |-  ( ph  ->  C  e.  NN0 )   &    |-  ( ph  ->  D  e.  NN0 )   =>    |-  ( ph  ->  (
 ( ( ( A  +  B ) ^
 2 )  +  B )  =  ( (
 ( C  +  D ) ^ 2 )  +  D )  <->  ( A  =  C  /\  B  =  D ) ) )
 
Theoremnn0opth2 10425 An ordered pair theorem for nonnegative integers. Theorem 17.3 of [Quine] p. 124. See nn0opthd 10423. (Contributed by NM, 22-Jul-2004.)
 |-  ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  ->  (
 ( ( ( A  +  B ) ^
 2 )  +  B )  =  ( (
 ( C  +  D ) ^ 2 )  +  D )  <->  ( A  =  C  /\  B  =  D ) ) )
 
4.6.8  Factorial function
 
Syntaxcfa 10426 Extend class notation to include the factorial of nonnegative integers.
 class  !
 
Definitiondf-fac 10427 Define the factorial function on nonnegative integers. For example,  ( ! `  5 )  =  1 2 0 because  1  x.  2  x.  3  x.  4  x.  5  =  1 2 0 (ex-fac 12836). In the literature, the factorial function is written as a postscript exclamation point. (Contributed by NM, 2-Dec-2004.)
 |-  !  =  ( { <. 0 ,  1 >. }  u.  seq 1 (  x.  ,  _I  )
 )
 
Theoremfacnn 10428 Value of the factorial function for positive integers. (Contributed by NM, 2-Dec-2004.) (Revised by Mario Carneiro, 13-Jul-2013.)
 |-  ( N  e.  NN  ->  ( ! `  N )  =  (  seq 1 (  x.  ,  _I  ) `  N ) )
 
Theoremfac0 10429 The factorial of 0. (Contributed by NM, 2-Dec-2004.) (Revised by Mario Carneiro, 13-Jul-2013.)
 |-  ( ! `  0
 )  =  1
 
Theoremfac1 10430 The factorial of 1. (Contributed by NM, 2-Dec-2004.) (Revised by Mario Carneiro, 13-Jul-2013.)
 |-  ( ! `  1
 )  =  1
 
Theoremfacp1 10431 The factorial of a successor. (Contributed by NM, 2-Dec-2004.) (Revised by Mario Carneiro, 13-Jul-2013.)
 |-  ( N  e.  NN0  ->  ( ! `  ( N  +  1 ) )  =  ( ( ! `
  N )  x.  ( N  +  1 ) ) )
 
Theoremfac2 10432 The factorial of 2. (Contributed by NM, 17-Mar-2005.)
 |-  ( ! `  2
 )  =  2
 
Theoremfac3 10433 The factorial of 3. (Contributed by NM, 17-Mar-2005.)
 |-  ( ! `  3
 )  =  6
 
Theoremfac4 10434 The factorial of 4. (Contributed by Mario Carneiro, 18-Jun-2015.)
 |-  ( ! `  4
 )  = ; 2 4
 
Theoremfacnn2 10435 Value of the factorial function expressed recursively. (Contributed by NM, 2-Dec-2004.)
 |-  ( N  e.  NN  ->  ( ! `  N )  =  ( ( ! `  ( N  -  1 ) )  x.  N ) )
 
Theoremfaccl 10436 Closure of the factorial function. (Contributed by NM, 2-Dec-2004.)
 |-  ( N  e.  NN0  ->  ( ! `  N )  e.  NN )
 
Theoremfaccld 10437 Closure of the factorial function, deduction version of faccl 10436. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
 |-  ( ph  ->  N  e.  NN0 )   =>    |-  ( ph  ->  ( ! `  N )  e. 
 NN )
 
Theoremfacne0 10438 The factorial function is nonzero. (Contributed by NM, 26-Apr-2005.)
 |-  ( N  e.  NN0  ->  ( ! `  N )  =/=  0 )
 
Theoremfacdiv 10439 A positive integer divides the factorial of an equal or larger number. (Contributed by NM, 2-May-2005.)
 |-  ( ( M  e.  NN0  /\  N  e.  NN  /\  N  <_  M )  ->  ( ( ! `  M )  /  N )  e.  NN )
 
Theoremfacndiv 10440 No positive integer (greater than one) divides the factorial plus one of an equal or larger number. (Contributed by NM, 3-May-2005.)
 |-  ( ( ( M  e.  NN0  /\  N  e.  NN )  /\  ( 1  <  N  /\  N  <_  M ) )  ->  -.  ( ( ( ! `
  M )  +  1 )  /  N )  e.  ZZ )
 
Theoremfacwordi 10441 Ordering property of factorial. (Contributed by NM, 9-Dec-2005.)
 |-  ( ( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N )  ->  ( ! `  M )  <_  ( ! `  N ) )
 
Theoremfaclbnd 10442 A lower bound for the factorial function. (Contributed by NM, 17-Dec-2005.)
 |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  ( M ^ ( N  +  1 )
 )  <_  ( ( M ^ M )  x.  ( ! `  N ) ) )
 
Theoremfaclbnd2 10443 A lower bound for the factorial function. (Contributed by NM, 17-Dec-2005.)
 |-  ( N  e.  NN0  ->  ( ( 2 ^ N )  /  2
 )  <_  ( ! `  N ) )
 
Theoremfaclbnd3 10444 A lower bound for the factorial function. (Contributed by NM, 19-Dec-2005.)
 |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  ( M ^ N )  <_  ( ( M ^ M )  x.  ( ! `  N ) ) )
 
Theoremfaclbnd6 10445 Geometric lower bound for the factorial function, where N is usually held constant. (Contributed by Paul Chapman, 28-Dec-2007.)
 |-  ( ( N  e.  NN0  /\  M  e.  NN0 )  ->  ( ( ! `  N )  x.  (
 ( N  +  1 ) ^ M ) )  <_  ( ! `  ( N  +  M ) ) )
 
Theoremfacubnd 10446 An upper bound for the factorial function. (Contributed by Mario Carneiro, 15-Apr-2016.)
 |-  ( N  e.  NN0  ->  ( ! `  N ) 
 <_  ( N ^ N ) )
 
Theoremfacavg 10447 The product of two factorials is greater than or equal to the factorial of (the floor of) their average. (Contributed by NM, 9-Dec-2005.)
 |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  ( ! `  ( |_ `  ( ( M  +  N )  / 
 2 ) ) ) 
 <_  ( ( ! `  M )  x.  ( ! `  N ) ) )
 
4.6.9  The binomial coefficient operation
 
Syntaxcbc 10448 Extend class notation to include the binomial coefficient operation (combinatorial choose operation).
 class  _C
 
Definitiondf-bc 10449* Define the binomial coefficient operation. For example,  ( 5  _C  3 )  =  1 0 (ex-bc 12837).

In the literature, this function is often written as a column vector of the two arguments, or with the arguments as subscripts before and after the letter "C".  ( N  _C  K
) is read " N choose  K." Definition of binomial coefficient in [Gleason] p. 295. As suggested by Gleason, we define it to be 0 when  0  <_  k  <_  n does not hold. (Contributed by NM, 10-Jul-2005.)

 |- 
 _C  =  ( n  e.  NN0 ,  k  e. 
 ZZ  |->  if ( k  e.  ( 0 ... n ) ,  ( ( ! `  n )  /  ( ( ! `  ( n  -  k
 ) )  x.  ( ! `  k ) ) ) ,  0 ) )
 
Theorembcval 10450 Value of the binomial coefficient, 
N choose  K. Definition of binomial coefficient in [Gleason] p. 295. As suggested by Gleason, we define it to be 0 when  0  <_  K  <_  N does not hold. See bcval2 10451 for the value in the standard domain. (Contributed by NM, 10-Jul-2005.) (Revised by Mario Carneiro, 7-Nov-2013.)
 |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  ( N  _C  K )  =  if ( K  e.  ( 0 ... N ) ,  (
 ( ! `  N )  /  ( ( ! `
  ( N  -  K ) )  x.  ( ! `  K ) ) ) ,  0 ) )
 
Theorembcval2 10451 Value of the binomial coefficient, 
N choose  K, in its standard domain. (Contributed by NM, 9-Jun-2005.) (Revised by Mario Carneiro, 7-Nov-2013.)
 |-  ( K  e.  (
 0 ... N )  ->  ( N  _C  K )  =  ( ( ! `
  N )  /  ( ( ! `  ( N  -  K ) )  x.  ( ! `  K ) ) ) )
 
Theorembcval3 10452 Value of the binomial coefficient, 
N choose  K, outside of its standard domain. Remark in [Gleason] p. 295. (Contributed by NM, 14-Jul-2005.) (Revised by Mario Carneiro, 8-Nov-2013.)
 |-  ( ( N  e.  NN0  /\  K  e.  ZZ  /\  -.  K  e.  ( 0
 ... N ) ) 
 ->  ( N  _C  K )  =  0 )
 
Theorembcval4 10453 Value of the binomial coefficient, 
N choose  K, outside of its standard domain. Remark in [Gleason] p. 295. (Contributed by NM, 14-Jul-2005.) (Revised by Mario Carneiro, 7-Nov-2013.)
 |-  ( ( N  e.  NN0  /\  K  e.  ZZ  /\  ( K  <  0  \/  N  <  K ) )  ->  ( N  _C  K )  =  0 )
 
Theorembcrpcl 10454 Closure of the binomial coefficient in the positive reals. (This is mostly a lemma before we have bccl2 10469.) (Contributed by Mario Carneiro, 10-Mar-2014.)
 |-  ( K  e.  (
 0 ... N )  ->  ( N  _C  K )  e.  RR+ )
 
Theorembccmpl 10455 "Complementing" its second argument doesn't change a binary coefficient. (Contributed by NM, 21-Jun-2005.) (Revised by Mario Carneiro, 5-Mar-2014.)
 |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  ( N  _C  K )  =  ( N  _C  ( N  -  K ) ) )
 
Theorembcn0 10456  N choose 0 is 1. Remark in [Gleason] p. 296. (Contributed by NM, 17-Jun-2005.) (Revised by Mario Carneiro, 8-Nov-2013.)
 |-  ( N  e.  NN0  ->  ( N  _C  0
 )  =  1 )
 
Theorembc0k 10457 The binomial coefficient " 0 choose  K " is 0 for a positive integer K. Note that  ( 0  _C  0 )  =  1 (see bcn0 10456). (Contributed by Alexander van der Vekens, 1-Jan-2018.)
 |-  ( K  e.  NN  ->  ( 0  _C  K )  =  0 )
 
Theorembcnn 10458  N choose  N is 1. Remark in [Gleason] p. 296. (Contributed by NM, 17-Jun-2005.) (Revised by Mario Carneiro, 8-Nov-2013.)
 |-  ( N  e.  NN0  ->  ( N  _C  N )  =  1 )
 
Theorembcn1 10459 Binomial coefficient:  N choose  1. (Contributed by NM, 21-Jun-2005.) (Revised by Mario Carneiro, 8-Nov-2013.)
 |-  ( N  e.  NN0  ->  ( N  _C  1
 )  =  N )
 
Theorembcnp1n 10460 Binomial coefficient:  N  +  1 choose  N. (Contributed by NM, 20-Jun-2005.) (Revised by Mario Carneiro, 8-Nov-2013.)
 |-  ( N  e.  NN0  ->  ( ( N  +  1 )  _C  N )  =  ( N  +  1 ) )
 
Theorembcm1k 10461 The proportion of one binomial coefficient to another with  K decreased by 1. (Contributed by Mario Carneiro, 10-Mar-2014.)
 |-  ( K  e.  (
 1 ... N )  ->  ( N  _C  K )  =  ( ( N  _C  ( K  -  1 ) )  x.  ( ( N  -  ( K  -  1
 ) )  /  K ) ) )
 
Theorembcp1n 10462 The proportion of one binomial coefficient to another with  N increased by 1. (Contributed by Mario Carneiro, 10-Mar-2014.)
 |-  ( K  e.  (
 0 ... N )  ->  ( ( N  +  1 )  _C  K )  =  ( ( N  _C  K )  x.  ( ( N  +  1 )  /  (
 ( N  +  1 )  -  K ) ) ) )
 
Theorembcp1nk 10463 The proportion of one binomial coefficient to another with  N and  K increased by 1. (Contributed by Mario Carneiro, 16-Jan-2015.)
 |-  ( K  e.  (
 0 ... N )  ->  ( ( N  +  1 )  _C  ( K  +  1 )
 )  =  ( ( N  _C  K )  x.  ( ( N  +  1 )  /  ( K  +  1
 ) ) ) )
 
Theorembcval5 10464 Write out the top and bottom parts of the binomial coefficient  ( N  _C  K )  =  ( N  x.  ( N  -  1 )  x. 
...  x.  ( ( N  -  K )  +  1 ) )  /  K ! explicitly. In this form, it is valid even for  N  <  K, although it is no longer valid for nonpositive  K. (Contributed by Mario Carneiro, 22-May-2014.) (Revised by Jim Kingdon, 23-Apr-2023.)
 |-  ( ( N  e.  NN0  /\  K  e.  NN )  ->  ( N  _C  K )  =  ( (  seq ( ( N  -  K )  +  1
 ) (  x.  ,  _I  ) `  N ) 
 /  ( ! `  K ) ) )
 
Theorembcn2 10465 Binomial coefficient:  N choose  2. (Contributed by Mario Carneiro, 22-May-2014.)
 |-  ( N  e.  NN0  ->  ( N  _C  2
 )  =  ( ( N  x.  ( N  -  1 ) ) 
 /  2 ) )
 
Theorembcp1m1 10466 Compute the binomial coefficient of 
( N  +  1 ) over  ( N  - 
1 ) (Contributed by Scott Fenton, 11-May-2014.) (Revised by Mario Carneiro, 22-May-2014.)
 |-  ( N  e.  NN0  ->  ( ( N  +  1 )  _C  ( N  -  1 ) )  =  ( ( ( N  +  1 )  x.  N )  / 
 2 ) )
 
Theorembcpasc 10467 Pascal's rule for the binomial coefficient, generalized to all integers  K. Equation 2 of [Gleason] p. 295. (Contributed by NM, 13-Jul-2005.) (Revised by Mario Carneiro, 10-Mar-2014.)
 |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  ( ( N  _C  K )  +  ( N  _C  ( K  -  1 ) ) )  =  ( ( N  +  1 )  _C  K ) )
 
Theorembccl 10468 A binomial coefficient, in its extended domain, is a nonnegative integer. (Contributed by NM, 10-Jul-2005.) (Revised by Mario Carneiro, 9-Nov-2013.)
 |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  ( N  _C  K )  e.  NN0 )
 
Theorembccl2 10469 A binomial coefficient, in its standard domain, is a positive integer. (Contributed by NM, 3-Jan-2006.) (Revised by Mario Carneiro, 10-Mar-2014.)
 |-  ( K  e.  (
 0 ... N )  ->  ( N  _C  K )  e.  NN )
 
Theorembcn2m1 10470 Compute the binomial coefficient " N choose 2 " from " ( N  -  1 ) choose 2 ": (N-1) + ( (N-1) 2 ) = ( N 2 ). (Contributed by Alexander van der Vekens, 7-Jan-2018.)
 |-  ( N  e.  NN  ->  ( ( N  -  1 )  +  (
 ( N  -  1
 )  _C  2 )
 )  =  ( N  _C  2 ) )
 
Theorembcn2p1 10471 Compute the binomial coefficient " ( N  +  1
) choose 2 " from " N choose 2 ": N + ( N 2 ) = ( (N+1) 2 ). (Contributed by Alexander van der Vekens, 8-Jan-2018.)
 |-  ( N  e.  NN0  ->  ( N  +  ( N  _C  2 ) )  =  ( ( N  +  1 )  _C  2 ) )
 
Theorempermnn 10472 The number of permutations of  N  -  R objects from a collection of  N objects is a positive integer. (Contributed by Jason Orendorff, 24-Jan-2007.)
 |-  ( R  e.  (
 0 ... N )  ->  ( ( ! `  N )  /  ( ! `  R ) )  e.  NN )
 
Theorembcnm1 10473 The binomial coefficent of  ( N  -  1 ) is  N. (Contributed by Scott Fenton, 16-May-2014.)
 |-  ( N  e.  NN0  ->  ( N  _C  ( N  -  1 ) )  =  N )
 
Theorem4bc3eq4 10474 The value of four choose three. (Contributed by Scott Fenton, 11-Jun-2016.)
 |-  ( 4  _C  3
 )  =  4
 
Theorem4bc2eq6 10475 The value of four choose two. (Contributed by Scott Fenton, 9-Jan-2017.)
 |-  ( 4  _C  2
 )  =  6
 
4.6.10  The ` # ` (set size) function
 
Syntaxchash 10476 Extend the definition of a class to include the set size function.
 class
 
Definitiondf-ihash 10477* Define the set size function ♯, which gives the cardinality of a finite set as a member of 
NN0, and assigns all infinite sets the value +oo. For example,  ( `  {
0 ,  1 ,  2 } )  =  3.

Note that we use the sharp sign (♯) for this function and we use the different character octothorpe (#) for the apartness relation (see df-ap 8311). We adopt the former notation from Corollary 8.2.4 of [AczelRathjen], p. 80 (although that work only defines it for finite sets).

This definition (in terms of  U. and 
~<_) is not taken directly from the literature, but for finite sets should be equivalent to the conventional definition that the size of a finite set is the unique natural number which is equinumerous to the given set. (Contributed by Jim Kingdon, 19-Feb-2022.)

 |- =  ( (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  u.  { <. om , +oo >. } )  o.  ( x  e.  _V  |->  U.
 { y  e.  ( om  u.  { om }
 )  |  y  ~<_  x } ) )
 
Theoremhashinfuni 10478* The ordinal size of an infinite set is  om. (Contributed by Jim Kingdon, 20-Feb-2022.)
 |-  ( om  ~<_  A  ->  U.
 { y  e.  ( om  u.  { om }
 )  |  y  ~<_  A }  =  om )
 
Theoremhashinfom 10479 The value of the ♯ function on an infinite set. (Contributed by Jim Kingdon, 20-Feb-2022.)
 |-  ( om  ~<_  A  ->  ( `  A )  = +oo )
 
Theoremhashennnuni 10480* The ordinal size of a set equinumerous to an element of  om is that element of  om. (Contributed by Jim Kingdon, 20-Feb-2022.)
 |-  ( ( N  e.  om 
 /\  N  ~~  A )  ->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  A }  =  N )
 
Theoremhashennn 10481* The size of a set equinumerous to an element of  om. (Contributed by Jim Kingdon, 21-Feb-2022.)
 |-  ( ( N  e.  om 
 /\  N  ~~  A )  ->  ( `  A )  =  (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 ) `  N ) )
 
Theoremhashcl 10482 Closure of the ♯ function. (Contributed by Paul Chapman, 26-Oct-2012.) (Revised by Mario Carneiro, 13-Jul-2014.)
 |-  ( A  e.  Fin  ->  ( `  A )  e. 
 NN0 )
 
Theoremhashfiv01gt1 10483 The size of a finite set is either 0 or 1 or greater than 1. (Contributed by Jim Kingdon, 21-Feb-2022.)
 |-  ( M  e.  Fin  ->  ( ( `  M )  =  0  \/  ( `  M )  =  1  \/  1  <  ( `  M ) ) )
 
Theoremhashfz1 10484 The set  ( 1 ... N ) has  N elements. (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 15-Sep-2013.)
 |-  ( N  e.  NN0  ->  ( `  ( 1 ...
 N ) )  =  N )
 
Theoremhashen 10485 Two finite sets have the same number of elements iff they are equinumerous. (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 15-Sep-2013.)
 |-  ( ( A  e.  Fin  /\  B  e.  Fin )  ->  ( ( `  A )  =  ( `  B ) 
 <->  A  ~~  B ) )
 
Theoremhasheqf1o 10486* The size of two finite sets is equal if and only if there is a bijection mapping one of the sets onto the other. (Contributed by Alexander van der Vekens, 17-Dec-2017.)
 |-  ( ( A  e.  Fin  /\  B  e.  Fin )  ->  ( ( `  A )  =  ( `  B ) 
 <-> 
 E. f  f : A -1-1-onto-> B ) )
 
Theoremfiinfnf1o 10487* There is no bijection between a finite set and an infinite set. By infnfi 6757 the theorem would also hold if "infinite" were expressed as  om  ~<_  B. (Contributed by Alexander van der Vekens, 25-Dec-2017.)
 |-  ( ( A  e.  Fin  /\  -.  B  e.  Fin )  ->  -.  E. f  f : A -1-1-onto-> B )
 
Theoremfocdmex 10488 The codomain of an onto function is a set if its domain is a set. (Contributed by AV, 4-May-2021.)
 |-  ( ( A  e.  V  /\  F : A -onto-> B )  ->  B  e.  _V )
 
Theoremfihasheqf1oi 10489 The size of two finite sets is equal if there is a bijection mapping one of the sets onto the other. (Contributed by Jim Kingdon, 21-Feb-2022.)
 |-  ( ( A  e.  Fin  /\  F : A -1-1-onto-> B )  ->  ( `  A )  =  ( `  B ) )
 
Theoremfihashf1rn 10490 The size of a finite set which is a one-to-one function is equal to the size of the function's range. (Contributed by Jim Kingdon, 21-Feb-2022.)
 |-  ( ( A  e.  Fin  /\  F : A -1-1-> B )  ->  ( `  F )  =  ( `  ran  F ) )
 
Theoremfihasheqf1od 10491 The size of two finite sets is equal if there is a bijection mapping one of the sets onto the other. (Contributed by Jim Kingdon, 21-Feb-2022.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  F : A -1-1-onto-> B )   =>    |-  ( ph  ->  ( `  A )  =  ( `  B ) )
 
Theoremfz1eqb 10492 Two possibly-empty 1-based finite sets of sequential integers are equal iff their endpoints are equal. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by Mario Carneiro, 29-Mar-2014.)
 |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  ( ( 1 ...
 M )  =  ( 1 ... N )  <->  M  =  N )
 )
 
Theoremfiltinf 10493 The size of an infinite set is greater than the size of a finite set. (Contributed by Jim Kingdon, 21-Feb-2022.)
 |-  ( ( A  e.  Fin  /\  om  ~<_  B )  ->  ( `  A )  < 
 ( `  B ) )
 
Theoremisfinite4im 10494 A finite set is equinumerous to the range of integers from one up to the hash value of the set. (Contributed by Jim Kingdon, 22-Feb-2022.)
 |-  ( A  e.  Fin  ->  ( 1 ... ( `  A ) )  ~~  A )
 
Theoremfihasheq0 10495 Two ways of saying a finite set is empty. (Contributed by Paul Chapman, 26-Oct-2012.) (Revised by Mario Carneiro, 27-Jul-2014.) (Intuitionized by Jim Kingdon, 23-Feb-2022.)
 |-  ( A  e.  Fin  ->  ( ( `  A )  =  0  <->  A  =  (/) ) )
 
Theoremfihashneq0 10496 Two ways of saying a finite set is not empty. Also, "A is inhabited" would be equivalent by fin0 6747. (Contributed by Alexander van der Vekens, 23-Sep-2018.) (Intuitionized by Jim Kingdon, 23-Feb-2022.)
 |-  ( A  e.  Fin  ->  ( 0  <  ( `  A )  <->  A  =/=  (/) ) )
 
Theoremhashnncl 10497 Positive natural closure of the hash function. (Contributed by Mario Carneiro, 16-Jan-2015.)
 |-  ( A  e.  Fin  ->  ( ( `  A )  e.  NN  <->  A  =/=  (/) ) )
 
Theoremhash0 10498 The empty set has size zero. (Contributed by Mario Carneiro, 8-Jul-2014.)
 |-  ( `  (/) )  =  0
 
Theoremhashsng 10499 The size of a singleton. (Contributed by Paul Chapman, 26-Oct-2012.) (Proof shortened by Mario Carneiro, 13-Feb-2013.)
 |-  ( A  e.  V  ->  ( `  { A }
 )  =  1 )
 
Theoremfihashen1 10500 A finite set has size 1 if and only if it is equinumerous to the ordinal 1. (Contributed by AV, 14-Apr-2019.) (Intuitionized by Jim Kingdon, 23-Feb-2022.)
 |-  ( A  e.  Fin  ->  ( ( `  A )  =  1  <->  A  ~~  1o )
 )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13145
  Copyright terms: Public domain < Previous  Next >