HomeHome Intuitionistic Logic Explorer
Theorem List (p. 105 of 142)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 10401-10500   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
4.6.5  The infinite sequence builder "seq"
 
Syntaxcseq 10401 Extend class notation with recursive sequence builder.
 class  seq M (  .+  ,  F )
 
Definitiondf-seqfrec 10402* Define a general-purpose operation that builds a recursive sequence (i.e., a function on an upper integer set such as  NN or  NN0) whose value at an index is a function of its previous value and the value of an input sequence at that index. This definition is complicated, but fortunately it is not intended to be used directly. Instead, the only purpose of this definition is to provide us with an object that has the properties expressed by seqf 10417, seq3-1 10416 and seq3p1 10418. Typically, those are the main theorems that would be used in practice.

The first operand in the parentheses is the operation that is applied to the previous value and the value of the input sequence (second operand). The operand to the left of the parenthesis is the integer to start from. For example, for the operation  +, an input sequence  F with values 1, 1/2, 1/4, 1/8,... would be transformed into the output sequence  seq 1 (  +  ,  F ) with values 1, 3/2, 7/4, 15/8,.., so that  (  seq 1
(  +  ,  F
) `  1 )  =  1,  (  seq 1 (  +  ,  F ) `  2
)  = 3/2, etc. In other words,  seq M (  +  ,  F ) transforms a sequence  F into an infinite series. 
seq M (  +  ,  F )  ~~>  2 means "the sum of F(n) from n = M to infinity is 2". Since limits are unique (climuni 11256), by climdm 11258 the "sum of F(n) from n = 1 to infinity" can be expressed as  (  ~~>  `  seq 1
(  +  ,  F
) ) (provided the sequence converges) and evaluates to 2 in this example.

Internally, the frec function generates as its values a set of ordered pairs starting at 
<. M ,  ( F `
 M ) >., with the first member of each pair incremented by one in each successive value. So, the range of frec is exactly the sequence we want, and we just extract the range and throw away the domain.

(Contributed by NM, 18-Apr-2005.) (Revised by Jim Kingdon, 4-Nov-2022.)

 |- 
 seq M (  .+  ,  F )  =  ran frec ( ( x  e.  ( ZZ>=
 `  M ) ,  y  e.  _V  |->  <.
 ( x  +  1 ) ,  ( y 
 .+  ( F `  ( x  +  1
 ) ) ) >. ) ,  <. M ,  ( F `  M ) >. )
 
Theoremseqex 10403 Existence of the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.)
 |- 
 seq M (  .+  ,  F )  e.  _V
 
Theoremseqeq1 10404 Equality theorem for the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.)
 |-  ( M  =  N  ->  seq M (  .+  ,  F )  =  seq N (  .+  ,  F ) )
 
Theoremseqeq2 10405 Equality theorem for the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.)
 |-  (  .+  =  Q  ->  seq M (  .+  ,  F )  =  seq M ( Q ,  F ) )
 
Theoremseqeq3 10406 Equality theorem for the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.)
 |-  ( F  =  G  ->  seq M (  .+  ,  F )  =  seq M (  .+  ,  G ) )
 
Theoremseqeq1d 10407 Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  seq A (  .+  ,  F )  =  seq B ( 
 .+  ,  F )
 )
 
Theoremseqeq2d 10408 Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  seq M ( A ,  F )  =  seq M ( B ,  F ) )
 
Theoremseqeq3d 10409 Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  seq M (  .+  ,  A )  =  seq M ( 
 .+  ,  B )
 )
 
Theoremseqeq123d 10410 Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.)
 |-  ( ph  ->  M  =  N )   &    |-  ( ph  ->  .+  =  Q )   &    |-  ( ph  ->  F  =  G )   =>    |-  ( ph  ->  seq M (  .+  ,  F )  =  seq N ( Q ,  G ) )
 
Theoremnfseq 10411 Hypothesis builder for the sequence builder operation. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Mario Carneiro, 15-Oct-2016.)
 |-  F/_ x M   &    |-  F/_ x  .+   &    |-  F/_ x F   =>    |-  F/_ x  seq M (  .+  ,  F )
 
Theoremiseqovex 10412* Closure of a function used in proving sequence builder theorems. This can be thought of as a lemma for the small number of sequence builder theorems which need it. (Contributed by Jim Kingdon, 31-May-2020.)
 |-  ( ( ph  /\  x  e.  ( ZZ>= `  M )
 )  ->  ( F `  x )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   =>    |-  ( ( ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  S ) )  ->  ( x ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `
  ( z  +  1 ) ) ) ) y )  e.  S )
 
Theoremiseqvalcbv 10413* Changing the bound variables in an expression which appears in some  seq related proofs. (Contributed by Jim Kingdon, 28-Apr-2022.)
 |- frec
 ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  T  |->  <.
 ( x  +  1 ) ,  ( x ( z  e.  ( ZZ>=
 `  M ) ,  w  e.  S  |->  ( w  .+  ( F `
  ( z  +  1 ) ) ) ) y ) >. ) ,  <. M ,  ( F `  M ) >. )  = frec ( ( a  e.  ( ZZ>= `  M ) ,  b  e.  T  |->  <. ( a  +  1 ) ,  (
 a ( c  e.  ( ZZ>= `  M ) ,  d  e.  S  |->  ( d  .+  ( F `
  ( c  +  1 ) ) ) ) b ) >. ) ,  <. M ,  ( F `  M ) >. )
 
Theoremseq3val 10414* Value of the sequence builder function. This helps expand the definition although there should be little need for it once we have proved seqf 10417, seq3-1 10416 and seq3p1 10418, as further development can be done in terms of those. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Jim Kingdon, 4-Nov-2022.)
 |-  ( ph  ->  M  e.  ZZ )   &    |-  R  = frec (
 ( x  e.  ( ZZ>=
 `  M ) ,  y  e.  _V  |->  <.
 ( x  +  1 ) ,  ( x ( z  e.  ( ZZ>=
 `  M ) ,  w  e.  S  |->  ( w  .+  ( F `
  ( z  +  1 ) ) ) ) y ) >. ) ,  <. M ,  ( F `  M ) >. )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M )
 )  ->  ( F `  x )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   =>    |-  ( ph  ->  seq M (  .+  ,  F )  =  ran  R )
 
Theoremseqvalcd 10415* Value of the sequence builder function. Similar to seq3val 10414 but the classes  D (type of each term) and  C (type of the value we are accumulating) do not need to be the same. (Contributed by Jim Kingdon, 9-Jul-2023.)
 |-  ( ph  ->  M  e.  ZZ )   &    |-  R  = frec (
 ( x  e.  ( ZZ>=
 `  M ) ,  y  e.  _V  |->  <.
 ( x  +  1 ) ,  ( x ( z  e.  ( ZZ>=
 `  M ) ,  w  e.  C  |->  ( w  .+  ( F `
  ( z  +  1 ) ) ) ) y ) >. ) ,  <. M ,  ( F `  M ) >. )   &    |-  ( ph  ->  ( F `  M )  e.  C )   &    |-  ( ( ph  /\  ( x  e.  C  /\  y  e.  D )
 )  ->  ( x  .+  y )  e.  C )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( F `  x )  e.  D )   =>    |-  ( ph  ->  seq M (  .+  ,  F )  =  ran  R )
 
Theoremseq3-1 10416* Value of the sequence builder function at its initial value. (Contributed by Jim Kingdon, 3-Oct-2022.)
 |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M ) )  ->  ( F `  x )  e.  S )   &    |-  (
 ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ( x  .+  y )  e.  S )   =>    |-  ( ph  ->  ( 
 seq M (  .+  ,  F ) `  M )  =  ( F `  M ) )
 
Theoremseqf 10417* Range of the recursive sequence builder. (Contributed by Mario Carneiro, 24-Jun-2013.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  (
 ( ph  /\  x  e.  Z )  ->  ( F `  x )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ( x 
 .+  y )  e.  S )   =>    |-  ( ph  ->  seq M (  .+  ,  F ) : Z --> S )
 
Theoremseq3p1 10418* Value of the sequence builder function at a successor. (Contributed by Jim Kingdon, 30-Apr-2022.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M )
 )  ->  ( F `  x )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   =>    |-  ( ph  ->  (  seq M (  .+  ,  F ) `  ( N  +  1 )
 )  =  ( ( 
 seq M (  .+  ,  F ) `  N )  .+  ( F `  ( N  +  1
 ) ) ) )
 
Theoremseqovcd 10419* A closure law for the recursive sequence builder. This is a lemma for theorems such as seqf2 10420 and seq1cd 10421 and is unlikely to be needed once such theorems are proved. (Contributed by Jim Kingdon, 20-Jul-2023.)
 |-  ( ( ph  /\  x  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( F `  x )  e.  D )   &    |-  ( ( ph  /\  ( x  e.  C  /\  y  e.  D )
 )  ->  ( x  .+  y )  e.  C )   =>    |-  ( ( ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  C ) )  ->  ( x ( z  e.  ( ZZ>= `  M ) ,  w  e.  C  |->  ( w  .+  ( F `
  ( z  +  1 ) ) ) ) y )  e.  C )
 
Theoremseqf2 10420* Range of the recursive sequence builder. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Jim Kingdon, 7-Jul-2023.)
 |-  ( ph  ->  ( F `  M )  e.  C )   &    |-  ( ( ph  /\  ( x  e.  C  /\  y  e.  D ) )  ->  ( x 
 .+  y )  e.  C )   &    |-  Z  =  (
 ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( F `  x )  e.  D )   =>    |-  ( ph  ->  seq M (  .+  ,  F ) : Z --> C )
 
Theoremseq1cd 10421* Initial value of the recursive sequence builder. A version of seq3-1 10416 which provides two classes 
D and  C for the terms and the value being accumulated, respectively. (Contributed by Jim Kingdon, 19-Jul-2023.)
 |-  ( ph  ->  ( F `  M )  e.  C )   &    |-  ( ( ph  /\  ( x  e.  C  /\  y  e.  D ) )  ->  ( x 
 .+  y )  e.  C )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  (
 ( ph  /\  x  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( F `  x )  e.  D )   =>    |-  ( ph  ->  (  seq M (  .+  ,  F ) `  M )  =  ( F `  M ) )
 
Theoremseqp1cd 10422* Value of the sequence builder function at a successor. A version of seq3p1 10418 which provides two classes  D and  C for the terms and the value being accumulated, respectively. (Contributed by Jim Kingdon, 20-Jul-2023.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ph  ->  ( F `  M )  e.  C )   &    |-  ( ( ph  /\  ( x  e.  C  /\  y  e.  D ) )  ->  ( x 
 .+  y )  e.  C )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  ( M  +  1
 ) ) )  ->  ( F `  x )  e.  D )   =>    |-  ( ph  ->  ( 
 seq M (  .+  ,  F ) `  ( N  +  1 )
 )  =  ( ( 
 seq M (  .+  ,  F ) `  N )  .+  ( F `  ( N  +  1
 ) ) ) )
 
Theoremseq3clss 10423* Closure property of the recursive sequence builder. (Contributed by Jim Kingdon, 28-Sep-2022.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M )
 )  ->  ( F `  x )  e.  T )   &    |-  ( ( ph  /\  x  e.  ( M ... N ) )  ->  ( F `
  x )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ( x 
 .+  y )  e.  S )   &    |-  ( ph  ->  S 
 C_  T )   &    |-  (
 ( ph  /\  ( x  e.  T  /\  y  e.  T ) )  ->  ( x  .+  y )  e.  T )   =>    |-  ( ph  ->  ( 
 seq M (  .+  ,  F ) `  N )  e.  S )
 
Theoremseq3m1 10424* Value of the sequence builder function at a successor. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Jim Kingdon, 3-Nov-2022.)
 |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  ( M  +  1 )
 ) )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M ) )  ->  ( F `  x )  e.  S )   &    |-  (
 ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ( x  .+  y )  e.  S )   =>    |-  ( ph  ->  ( 
 seq M (  .+  ,  F ) `  N )  =  ( (  seq M (  .+  ,  F ) `  ( N  -  1 ) ) 
 .+  ( F `  N ) ) )
 
Theoremseq3fveq2 10425* Equality of sequences. (Contributed by Jim Kingdon, 3-Jun-2020.)
 |-  ( ph  ->  K  e.  ( ZZ>= `  M )
 )   &    |-  ( ph  ->  (  seq M (  .+  ,  F ) `  K )  =  ( G `  K ) )   &    |-  (
 ( ph  /\  x  e.  ( ZZ>= `  M )
 )  ->  ( F `  x )  e.  S )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  K )
 )  ->  ( G `  x )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  K )
 )   &    |-  ( ( ph  /\  k  e.  ( ( K  +  1 ) ... N ) )  ->  ( F `
  k )  =  ( G `  k
 ) )   =>    |-  ( ph  ->  (  seq M (  .+  ,  F ) `  N )  =  (  seq K (  .+  ,  G ) `  N ) )
 
Theoremseq3feq2 10426* Equality of sequences. (Contributed by Jim Kingdon, 3-Jun-2020.)
 |-  ( ph  ->  K  e.  ( ZZ>= `  M )
 )   &    |-  ( ph  ->  (  seq M (  .+  ,  F ) `  K )  =  ( G `  K ) )   &    |-  (
 ( ph  /\  x  e.  ( ZZ>= `  M )
 )  ->  ( F `  x )  e.  S )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  K )
 )  ->  ( G `  x )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  ( K  +  1 ) ) )  ->  ( F `  k )  =  ( G `  k ) )   =>    |-  ( ph  ->  (  seq M (  .+  ,  F )  |`  ( ZZ>= `  K ) )  = 
 seq K (  .+  ,  G ) )
 
Theoremseq3fveq 10427* Equality of sequences. (Contributed by Jim Kingdon, 4-Jun-2020.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( M ... N ) )  ->  ( F `
  k )  =  ( G `  k
 ) )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M ) )  ->  ( F `  x )  e.  S )   &    |-  (
 ( ph  /\  x  e.  ( ZZ>= `  M )
 )  ->  ( G `  x )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   =>    |-  ( ph  ->  (  seq M (  .+  ,  F ) `  N )  =  (  seq M (  .+  ,  G ) `  N ) )
 
Theoremseq3feq 10428* Equality of sequences. (Contributed by Jim Kingdon, 15-Aug-2021.) (Revised by Jim Kingdon, 7-Apr-2023.)
 |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M ) )  ->  ( F `  x )  e.  S )   &    |-  (
 ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( F `  k )  =  ( G `  k ) )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ( x 
 .+  y )  e.  S )   =>    |-  ( ph  ->  seq M (  .+  ,  F )  =  seq M ( 
 .+  ,  G )
 )
 
Theoremseq3shft2 10429* Shifting the index set of a sequence. (Contributed by Jim Kingdon, 15-Aug-2021.) (Revised by Jim Kingdon, 7-Apr-2023.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ph  ->  K  e.  ZZ )   &    |-  ( ( ph  /\  k  e.  ( M
 ... N ) ) 
 ->  ( F `  k
 )  =  ( G `
  ( k  +  K ) ) )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M )
 )  ->  ( F `  x )  e.  S )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  ( M  +  K ) ) ) 
 ->  ( G `  x )  e.  S )   &    |-  (
 ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ( x  .+  y )  e.  S )   =>    |-  ( ph  ->  ( 
 seq M (  .+  ,  F ) `  N )  =  (  seq ( M  +  K ) (  .+  ,  G ) `  ( N  +  K ) ) )
 
Theoremserf 10430* An infinite series of complex terms is a function from  NN to  CC. (Contributed by NM, 18-Apr-2005.) (Revised by Mario Carneiro, 27-May-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 CC )   =>    |-  ( ph  ->  seq M (  +  ,  F ) : Z --> CC )
 
Theoremserfre 10431* An infinite series of real numbers is a function from  NN to  RR. (Contributed by NM, 18-Apr-2005.) (Revised by Mario Carneiro, 27-May-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 RR )   =>    |-  ( ph  ->  seq M (  +  ,  F ) : Z --> RR )
 
Theoremmonoord 10432* Ordering relation for a monotonic sequence, increasing case. (Contributed by NM, 13-Mar-2005.) (Revised by Mario Carneiro, 9-Feb-2014.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( M ... N ) )  ->  ( F `
  k )  e. 
 RR )   &    |-  ( ( ph  /\  k  e.  ( M
 ... ( N  -  1 ) ) ) 
 ->  ( F `  k
 )  <_  ( F `  ( k  +  1 ) ) )   =>    |-  ( ph  ->  ( F `  M ) 
 <_  ( F `  N ) )
 
Theoremmonoord2 10433* Ordering relation for a monotonic sequence, decreasing case. (Contributed by Mario Carneiro, 18-Jul-2014.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( M ... N ) )  ->  ( F `
  k )  e. 
 RR )   &    |-  ( ( ph  /\  k  e.  ( M
 ... ( N  -  1 ) ) ) 
 ->  ( F `  (
 k  +  1 ) )  <_  ( F `  k ) )   =>    |-  ( ph  ->  ( F `  N ) 
 <_  ( F `  M ) )
 
Theoremser3mono 10434* The partial sums in an infinite series of positive terms form a monotonic sequence. (Contributed by NM, 17-Mar-2005.) (Revised by Jim Kingdon, 22-Apr-2023.)
 |-  ( ph  ->  K  e.  ( ZZ>= `  M )
 )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  K )
 )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M )
 )  ->  ( F `  x )  e.  RR )   &    |-  ( ( ph  /\  x  e.  ( ( K  +  1 ) ... N ) )  ->  0  <_  ( F `  x ) )   =>    |-  ( ph  ->  (  seq M (  +  ,  F ) `  K )  <_  (  seq M (  +  ,  F ) `  N ) )
 
Theoremseq3split 10435* Split a sequence into two sequences. (Contributed by Jim Kingdon, 16-Aug-2021.) (Revised by Jim Kingdon, 21-Oct-2022.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S )
 )  ->  ( ( x  .+  y )  .+  z )  =  ( x  .+  ( y  .+  z ) ) )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  ( M  +  1 ) ) )   &    |-  ( ph  ->  M  e.  ( ZZ>= `  K ) )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  K ) )  ->  ( F `  x )  e.  S )   =>    |-  ( ph  ->  ( 
 seq K (  .+  ,  F ) `  N )  =  ( (  seq K (  .+  ,  F ) `  M )  .+  (  seq ( M  +  1 )
 (  .+  ,  F ) `  N ) ) )
 
Theoremseq3-1p 10436* Removing the first term from a sequence. (Contributed by Jim Kingdon, 16-Aug-2021.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S )
 )  ->  ( ( x  .+  y )  .+  z )  =  ( x  .+  ( y  .+  z ) ) )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  ( M  +  1 ) ) )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  (
 ( ph  /\  x  e.  ( ZZ>= `  M )
 )  ->  ( F `  x )  e.  S )   =>    |-  ( ph  ->  (  seq M (  .+  ,  F ) `  N )  =  ( ( F `  M )  .+  (  seq ( M  +  1 ) (  .+  ,  F ) `  N ) ) )
 
Theoremseq3caopr3 10437* Lemma for seq3caopr2 10438. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by Jim Kingdon, 22-Apr-2023.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x Q y )  e.  S )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M ) )  ->  ( F `  k )  e.  S )   &    |-  (
 ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( G `  k )  e.  S )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( H `  k )  =  ( ( F `  k
 ) Q ( G `
  k ) ) )   &    |-  ( ( ph  /\  n  e.  ( M..^ N ) )  ->  ( ( (  seq M (  .+  ,  F ) `  n ) Q (  seq M ( 
 .+  ,  G ) `  n ) )  .+  ( ( F `  ( n  +  1
 ) ) Q ( G `  ( n  +  1 ) ) ) )  =  ( ( (  seq M (  .+  ,  F ) `
  n )  .+  ( F `  ( n  +  1 ) ) ) Q ( ( 
 seq M (  .+  ,  G ) `  n )  .+  ( G `  ( n  +  1
 ) ) ) ) )   =>    |-  ( ph  ->  (  seq M (  .+  ,  H ) `  N )  =  ( (  seq M (  .+  ,  F ) `  N ) Q (  seq M (  .+  ,  G ) `
  N ) ) )
 
Theoremseq3caopr2 10438* The sum of two infinite series (generalized to an arbitrary commutative and associative operation). (Contributed by Mario Carneiro, 30-May-2014.) (Revised by Jim Kingdon, 23-Apr-2023.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x Q y )  e.  S )   &    |-  ( ( ph  /\  ( ( x  e.  S  /\  y  e.  S )  /\  (
 z  e.  S  /\  w  e.  S )
 ) )  ->  (
 ( x Q z )  .+  ( y Q w ) )  =  ( ( x 
 .+  y ) Q ( z  .+  w ) ) )   &    |-  ( ph  ->  N  e.  ( ZZ>=
 `  M ) )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( F `  k )  e.  S )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( G `  k )  e.  S )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( H `  k )  =  ( ( F `  k
 ) Q ( G `
  k ) ) )   =>    |-  ( ph  ->  (  seq M (  .+  ,  H ) `  N )  =  ( (  seq M (  .+  ,  F ) `  N ) Q (  seq M (  .+  ,  G ) `
  N ) ) )
 
Theoremseq3caopr 10439* The sum of two infinite series (generalized to an arbitrary commutative and associative operation). (Contributed by NM, 17-Mar-2005.) (Revised by Jim Kingdon, 23-Apr-2023.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  =  ( y  .+  x ) )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  ->  ( ( x  .+  y ) 
 .+  z )  =  ( x  .+  (
 y  .+  z )
 ) )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M ) )  ->  ( F `  k )  e.  S )   &    |-  (
 ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( G `  k )  e.  S )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( H `  k )  =  ( ( F `  k
 )  .+  ( G `  k ) ) )   =>    |-  ( ph  ->  (  seq M (  .+  ,  H ) `  N )  =  ( (  seq M (  .+  ,  F ) `
  N )  .+  (  seq M (  .+  ,  G ) `  N ) ) )
 
Theoremiseqf1olemkle 10440* Lemma for seq3f1o 10460. (Contributed by Jim Kingdon, 21-Aug-2022.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ph  ->  K  e.  ( M ... N ) )   &    |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )   &    |-  ( ph  ->  A. x  e.  ( M..^ K ) ( J `
  x )  =  x )   =>    |-  ( ph  ->  K  <_  ( `' J `  K ) )
 
Theoremiseqf1olemklt 10441* Lemma for seq3f1o 10460. (Contributed by Jim Kingdon, 21-Aug-2022.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ph  ->  K  e.  ( M ... N ) )   &    |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )   &    |-  ( ph  ->  A. x  e.  ( M..^ K ) ( J `
  x )  =  x )   &    |-  ( ph  ->  K  =/=  ( `' J `  K ) )   =>    |-  ( ph  ->  K  <  ( `' J `  K ) )
 
Theoremiseqf1olemqcl 10442 Lemma for seq3f1o 10460. (Contributed by Jim Kingdon, 27-Aug-2022.)
 |-  ( ph  ->  K  e.  ( M ... N ) )   &    |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )   &    |-  ( ph  ->  A  e.  ( M ... N ) )   =>    |-  ( ph  ->  if ( A  e.  ( K ... ( `' J `  K ) ) ,  if ( A  =  K ,  K ,  ( J `  ( A  -  1 ) ) ) ,  ( J `
  A ) )  e.  ( M ... N ) )
 
Theoremiseqf1olemqval 10443* Lemma for seq3f1o 10460. Value of the function  Q. (Contributed by Jim Kingdon, 28-Aug-2022.)
 |-  ( ph  ->  K  e.  ( M ... N ) )   &    |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )   &    |-  ( ph  ->  A  e.  ( M ... N ) )   &    |-  Q  =  ( u  e.  ( M
 ... N )  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `
  u ) ) )   =>    |-  ( ph  ->  ( Q `  A )  =  if ( A  e.  ( K ... ( `' J `  K ) ) ,  if ( A  =  K ,  K ,  ( J `  ( A  -  1
 ) ) ) ,  ( J `  A ) ) )
 
Theoremiseqf1olemnab 10444* Lemma for seq3f1o 10460. (Contributed by Jim Kingdon, 27-Aug-2022.)
 |-  ( ph  ->  K  e.  ( M ... N ) )   &    |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )   &    |-  ( ph  ->  A  e.  ( M ... N ) )   &    |-  ( ph  ->  B  e.  ( M ... N ) )   &    |-  ( ph  ->  ( Q `  A )  =  ( Q `  B ) )   &    |-  Q  =  ( u  e.  ( M ... N )  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `
  u ) ) )   =>    |-  ( ph  ->  -.  ( A  e.  ( K ... ( `' J `  K ) )  /\  -.  B  e.  ( K
 ... ( `' J `  K ) ) ) )
 
Theoremiseqf1olemab 10445* Lemma for seq3f1o 10460. (Contributed by Jim Kingdon, 27-Aug-2022.)
 |-  ( ph  ->  K  e.  ( M ... N ) )   &    |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )   &    |-  ( ph  ->  A  e.  ( M ... N ) )   &    |-  ( ph  ->  B  e.  ( M ... N ) )   &    |-  ( ph  ->  ( Q `  A )  =  ( Q `  B ) )   &    |-  Q  =  ( u  e.  ( M ... N )  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `
  u ) ) )   &    |-  ( ph  ->  A  e.  ( K ... ( `' J `  K ) ) )   &    |-  ( ph  ->  B  e.  ( K ... ( `' J `  K ) ) )   =>    |-  ( ph  ->  A  =  B )
 
Theoremiseqf1olemnanb 10446* Lemma for seq3f1o 10460. (Contributed by Jim Kingdon, 27-Aug-2022.)
 |-  ( ph  ->  K  e.  ( M ... N ) )   &    |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )   &    |-  ( ph  ->  A  e.  ( M ... N ) )   &    |-  ( ph  ->  B  e.  ( M ... N ) )   &    |-  ( ph  ->  ( Q `  A )  =  ( Q `  B ) )   &    |-  Q  =  ( u  e.  ( M ... N )  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `
  u ) ) )   &    |-  ( ph  ->  -.  A  e.  ( K
 ... ( `' J `  K ) ) )   &    |-  ( ph  ->  -.  B  e.  ( K ... ( `' J `  K ) ) )   =>    |-  ( ph  ->  A  =  B )
 
Theoremiseqf1olemqf 10447* Lemma for seq3f1o 10460. Domain and codomain of  Q. (Contributed by Jim Kingdon, 26-Aug-2022.)
 |-  ( ph  ->  K  e.  ( M ... N ) )   &    |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )   &    |-  Q  =  ( u  e.  ( M
 ... N )  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `
  u ) ) )   =>    |-  ( ph  ->  Q : ( M ... N ) --> ( M ... N ) )
 
Theoremiseqf1olemmo 10448* Lemma for seq3f1o 10460. Showing that  Q is one-to-one. (Contributed by Jim Kingdon, 27-Aug-2022.)
 |-  ( ph  ->  K  e.  ( M ... N ) )   &    |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )   &    |-  Q  =  ( u  e.  ( M
 ... N )  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `
  u ) ) )   &    |-  ( ph  ->  A  e.  ( M ... N ) )   &    |-  ( ph  ->  B  e.  ( M ... N ) )   &    |-  ( ph  ->  ( Q `  A )  =  ( Q `  B ) )   =>    |-  ( ph  ->  A  =  B )
 
Theoremiseqf1olemqf1o 10449* Lemma for seq3f1o 10460. 
Q is a permutation of  ( M ... N
).  Q is formed from the constant portion of  J, followed by the single element  K (at position  K), followed by the rest of J (with the  K deleted and the elements before  K moved one position later to fill the gap). (Contributed by Jim Kingdon, 21-Aug-2022.)
 |-  ( ph  ->  K  e.  ( M ... N ) )   &    |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )   &    |-  Q  =  ( u  e.  ( M
 ... N )  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `
  u ) ) )   =>    |-  ( ph  ->  Q : ( M ... N ) -1-1-onto-> ( M ... N ) )
 
Theoremiseqf1olemqk 10450* Lemma for seq3f1o 10460. 
Q is constant for one more position than  J is. (Contributed by Jim Kingdon, 21-Aug-2022.)
 |-  ( ph  ->  K  e.  ( M ... N ) )   &    |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )   &    |-  Q  =  ( u  e.  ( M
 ... N )  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `
  u ) ) )   &    |-  ( ph  ->  A. x  e.  ( M..^ K ) ( J `
  x )  =  x )   =>    |-  ( ph  ->  A. x  e.  ( M ... K ) ( Q `  x )  =  x )
 
Theoremiseqf1olemjpcl 10451* Lemma for seq3f1o 10460. A closure lemma involving  J and  P. (Contributed by Jim Kingdon, 29-Aug-2022.)
 |-  ( ph  ->  K  e.  ( M ... N ) )   &    |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )   &    |-  Q  =  ( u  e.  ( M
 ... N )  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `
  u ) ) )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M ) )  ->  ( G `  x )  e.  S )   &    |-  P  =  ( x  e.  ( ZZ>=
 `  M )  |->  if ( x  <_  N ,  ( G `  (
 f `  x )
 ) ,  ( G `
  M ) ) )   =>    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M )
 )  ->  ( [_ J  /  f ]_ P `  x )  e.  S )
 
Theoremiseqf1olemqpcl 10452* Lemma for seq3f1o 10460. A closure lemma involving  Q and  P. (Contributed by Jim Kingdon, 29-Aug-2022.)
 |-  ( ph  ->  K  e.  ( M ... N ) )   &    |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )   &    |-  Q  =  ( u  e.  ( M
 ... N )  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `
  u ) ) )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M ) )  ->  ( G `  x )  e.  S )   &    |-  P  =  ( x  e.  ( ZZ>=
 `  M )  |->  if ( x  <_  N ,  ( G `  (
 f `  x )
 ) ,  ( G `
  M ) ) )   =>    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M )
 )  ->  ( [_ Q  /  f ]_ P `  x )  e.  S )
 
Theoremiseqf1olemfvp 10453* Lemma for seq3f1o 10460. (Contributed by Jim Kingdon, 30-Aug-2022.)
 |-  ( ph  ->  K  e.  ( M ... N ) )   &    |-  ( ph  ->  T : ( M ... N ) -1-1-onto-> ( M ... N ) )   &    |-  ( ph  ->  A  e.  ( M ... N ) )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M ) )  ->  ( G `  x )  e.  S )   &    |-  P  =  ( x  e.  ( ZZ>=
 `  M )  |->  if ( x  <_  N ,  ( G `  (
 f `  x )
 ) ,  ( G `
  M ) ) )   =>    |-  ( ph  ->  ( [_ T  /  f ]_ P `  A )  =  ( G `  ( T `  A ) ) )
 
Theoremseq3f1olemqsumkj 10454* Lemma for seq3f1o 10460. 
Q gives the same sum as 
J in the range  ( K ... ( `' J `  K ) ). (Contributed by Jim Kingdon, 29-Aug-2022.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  =  ( y  .+  x ) )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  ->  ( ( x  .+  y ) 
 .+  z )  =  ( x  .+  (
 y  .+  z )
 ) )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )   &    |-  ( ph  ->  F : ( M ... N ) -1-1-onto-> ( M ... N ) )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M ) )  ->  ( G `  x )  e.  S )   &    |-  ( ph  ->  K  e.  ( M ... N ) )   &    |-  ( ph  ->  J :
 ( M ... N )
 -1-1-onto-> ( M ... N ) )   &    |-  ( ph  ->  A. x  e.  ( M..^ K ) ( J `
  x )  =  x )   &    |-  ( ph  ->  K  =/=  ( `' J `  K ) )   &    |-  Q  =  ( u  e.  ( M ... N )  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `
  u ) ) )   &    |-  P  =  ( x  e.  ( ZZ>= `  M )  |->  if ( x  <_  N ,  ( G `  ( f `  x ) ) ,  ( G `  M ) ) )   =>    |-  ( ph  ->  ( 
 seq K (  .+  , 
 [_ J  /  f ]_ P ) `  ( `' J `  K ) )  =  (  seq K (  .+  ,  [_ Q  /  f ]_ P ) `  ( `' J `  K ) ) )
 
Theoremseq3f1olemqsumk 10455* Lemma for seq3f1o 10460. 
Q gives the same sum as 
J in the range  ( K ... N ). (Contributed by Jim Kingdon, 22-Aug-2022.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  =  ( y  .+  x ) )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  ->  ( ( x  .+  y ) 
 .+  z )  =  ( x  .+  (
 y  .+  z )
 ) )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )   &    |-  ( ph  ->  F : ( M ... N ) -1-1-onto-> ( M ... N ) )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M ) )  ->  ( G `  x )  e.  S )   &    |-  ( ph  ->  K  e.  ( M ... N ) )   &    |-  ( ph  ->  J :
 ( M ... N )
 -1-1-onto-> ( M ... N ) )   &    |-  ( ph  ->  A. x  e.  ( M..^ K ) ( J `
  x )  =  x )   &    |-  ( ph  ->  K  =/=  ( `' J `  K ) )   &    |-  Q  =  ( u  e.  ( M ... N )  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `
  u ) ) )   &    |-  P  =  ( x  e.  ( ZZ>= `  M )  |->  if ( x  <_  N ,  ( G `  ( f `  x ) ) ,  ( G `  M ) ) )   =>    |-  ( ph  ->  ( 
 seq K (  .+  , 
 [_ J  /  f ]_ P ) `  N )  =  (  seq K (  .+  ,  [_ Q  /  f ]_ P ) `  N ) )
 
Theoremseq3f1olemqsum 10456* Lemma for seq3f1o 10460. 
Q gives the same sum as 
J. (Contributed by Jim Kingdon, 21-Aug-2022.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  =  ( y  .+  x ) )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  ->  ( ( x  .+  y ) 
 .+  z )  =  ( x  .+  (
 y  .+  z )
 ) )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )   &    |-  ( ph  ->  F : ( M ... N ) -1-1-onto-> ( M ... N ) )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M ) )  ->  ( G `  x )  e.  S )   &    |-  ( ph  ->  K  e.  ( M ... N ) )   &    |-  ( ph  ->  J :
 ( M ... N )
 -1-1-onto-> ( M ... N ) )   &    |-  ( ph  ->  A. x  e.  ( M..^ K ) ( J `
  x )  =  x )   &    |-  ( ph  ->  K  =/=  ( `' J `  K ) )   &    |-  Q  =  ( u  e.  ( M ... N )  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `
  u ) ) )   &    |-  P  =  ( x  e.  ( ZZ>= `  M )  |->  if ( x  <_  N ,  ( G `  ( f `  x ) ) ,  ( G `  M ) ) )   =>    |-  ( ph  ->  ( 
 seq M (  .+  , 
 [_ J  /  f ]_ P ) `  N )  =  (  seq M (  .+  ,  [_ Q  /  f ]_ P ) `  N ) )
 
Theoremseq3f1olemstep 10457* Lemma for seq3f1o 10460. Given a permutation which is constant up to a point, supply a new one which is constant for one more position. (Contributed by Jim Kingdon, 19-Aug-2022.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  =  ( y  .+  x ) )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  ->  ( ( x  .+  y ) 
 .+  z )  =  ( x  .+  (
 y  .+  z )
 ) )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )   &    |-  ( ph  ->  F : ( M ... N ) -1-1-onto-> ( M ... N ) )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M ) )  ->  ( G `  x )  e.  S )   &    |-  ( ph  ->  K  e.  ( M ... N ) )   &    |-  ( ph  ->  J :
 ( M ... N )
 -1-1-onto-> ( M ... N ) )   &    |-  ( ph  ->  A. x  e.  ( M..^ K ) ( J `
  x )  =  x )   &    |-  ( ph  ->  ( 
 seq M (  .+  , 
 [_ J  /  f ]_ P ) `  N )  =  (  seq M (  .+  ,  L ) `  N ) )   &    |-  P  =  ( x  e.  ( ZZ>= `  M )  |->  if ( x  <_  N ,  ( G `  ( f `  x ) ) ,  ( G `  M ) ) )   =>    |-  ( ph  ->  E. f
 ( f : ( M ... N ) -1-1-onto-> ( M ... N ) 
 /\  A. x  e.  ( M ... K ) ( f `  x )  =  x  /\  (  seq M (  .+  ,  P ) `  N )  =  (  seq M (  .+  ,  L ) `  N ) ) )
 
Theoremseq3f1olemp 10458* Lemma for seq3f1o 10460. Existence of a constant permutation of  ( M ... N ) which leads to the same sum as the permutation  F itself. (Contributed by Jim Kingdon, 18-Aug-2022.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  =  ( y  .+  x ) )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  ->  ( ( x  .+  y ) 
 .+  z )  =  ( x  .+  (
 y  .+  z )
 ) )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )   &    |-  ( ph  ->  F : ( M ... N ) -1-1-onto-> ( M ... N ) )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M ) )  ->  ( G `  x )  e.  S )   &    |-  L  =  ( x  e.  ( ZZ>=
 `  M )  |->  if ( x  <_  N ,  ( G `  ( F `  x ) ) ,  ( G `  M ) ) )   &    |-  P  =  ( x  e.  ( ZZ>= `  M )  |->  if ( x  <_  N ,  ( G `  ( f `  x ) ) ,  ( G `  M ) ) )   =>    |-  ( ph  ->  E. f
 ( f : ( M ... N ) -1-1-onto-> ( M ... N ) 
 /\  A. x  e.  ( M ... N ) ( f `  x )  =  x  /\  (  seq M (  .+  ,  P ) `  N )  =  (  seq M (  .+  ,  L ) `  N ) ) )
 
Theoremseq3f1oleml 10459* Lemma for seq3f1o 10460. This is more or less the result, but stated in terms of  F and  G without  H.  L and  H may differ in terms of what happens to terms after  N. The terms after  N don't matter for the value at  N but we need some definition given the way our theorems concerning  seq work. (Contributed by Jim Kingdon, 17-Aug-2022.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  =  ( y  .+  x ) )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  ->  ( ( x  .+  y ) 
 .+  z )  =  ( x  .+  (
 y  .+  z )
 ) )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )   &    |-  ( ph  ->  F : ( M ... N ) -1-1-onto-> ( M ... N ) )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M ) )  ->  ( G `  x )  e.  S )   &    |-  L  =  ( x  e.  ( ZZ>=
 `  M )  |->  if ( x  <_  N ,  ( G `  ( F `  x ) ) ,  ( G `  M ) ) )   =>    |-  ( ph  ->  (  seq M (  .+  ,  L ) `  N )  =  (  seq M ( 
 .+  ,  G ) `  N ) )
 
Theoremseq3f1o 10460* Rearrange a sum via an arbitrary bijection on  ( M ... N ). (Contributed by Mario Carneiro, 27-Feb-2014.) (Revised by Jim Kingdon, 3-Nov-2022.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  =  ( y  .+  x ) )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  ->  ( ( x  .+  y ) 
 .+  z )  =  ( x  .+  (
 y  .+  z )
 ) )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )   &    |-  ( ph  ->  F : ( M ... N ) -1-1-onto-> ( M ... N ) )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M ) )  ->  ( G `  x )  e.  S )   &    |-  (
 ( ph  /\  x  e.  ( ZZ>= `  M )
 )  ->  ( H `  x )  e.  S )   &    |-  ( ( ph  /\  k  e.  ( M ... N ) )  ->  ( H `
  k )  =  ( G `  ( F `  k ) ) )   =>    |-  ( ph  ->  (  seq M (  .+  ,  H ) `  N )  =  (  seq M (  .+  ,  G ) `  N ) )
 
Theoremser3add 10461* The sum of two infinite series. (Contributed by NM, 17-Mar-2005.) (Revised by Jim Kingdon, 4-Oct-2022.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( F `  k )  e.  CC )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( G `  k )  e.  CC )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( H `  k )  =  ( ( F `  k
 )  +  ( G `
  k ) ) )   =>    |-  ( ph  ->  (  seq M (  +  ,  H ) `  N )  =  ( (  seq M (  +  ,  F ) `  N )  +  (  seq M (  +  ,  G ) `  N ) ) )
 
Theoremser3sub 10462* The difference of two infinite series. (Contributed by NM, 17-Mar-2005.) (Revised by Jim Kingdon, 22-Apr-2023.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( F `  k )  e.  CC )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( G `  k )  e.  CC )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( H `  k )  =  ( ( F `  k
 )  -  ( G `
  k ) ) )   =>    |-  ( ph  ->  (  seq M (  +  ,  H ) `  N )  =  ( (  seq M (  +  ,  F ) `  N )  -  (  seq M (  +  ,  G ) `  N ) ) )
 
Theoremseq3id3 10463* A sequence that consists entirely of "zeroes" sums to "zero". More precisely, a constant sequence with value an element which is a  .+ -idempotent sums (or " .+'s") to that element. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by Jim Kingdon, 8-Apr-2023.)
 |-  ( ph  ->  ( Z  .+  Z )  =  Z )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )   &    |-  ( ( ph  /\  x  e.  ( M
 ... N ) ) 
 ->  ( F `  x )  =  Z )   &    |-  ( ph  ->  Z  e.  S )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M )
 )  ->  ( F `  x )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   =>    |-  ( ph  ->  (  seq M (  .+  ,  F ) `  N )  =  Z )
 
Theoremseq3id 10464* Discarding the first few terms of a sequence that starts with all zeroes (or any element which is a left-identity for  .+) has no effect on its sum. (Contributed by Mario Carneiro, 13-Jul-2013.) (Revised by Jim Kingdon, 8-Apr-2023.)
 |-  ( ( ph  /\  x  e.  S )  ->  ( Z  .+  x )  =  x )   &    |-  ( ph  ->  Z  e.  S )   &    |-  ( ph  ->  N  e.  ( ZZ>=
 `  M ) )   &    |-  ( ph  ->  ( F `  N )  e.  S )   &    |-  ( ( ph  /\  x  e.  ( M ... ( N  -  1 ) ) )  ->  ( F `  x )  =  Z )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M )
 )  ->  ( F `  x )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   =>    |-  ( ph  ->  (  seq M (  .+  ,  F )  |`  ( ZZ>= `  N ) )  = 
 seq N (  .+  ,  F ) )
 
Theoremseq3id2 10465* The last few partial sums of a sequence that ends with all zeroes (or any element which is a right-identity for  .+) are all the same. (Contributed by Mario Carneiro, 13-Jul-2013.) (Revised by Jim Kingdon, 12-Nov-2022.)
 |-  ( ( ph  /\  x  e.  S )  ->  ( x  .+  Z )  =  x )   &    |-  ( ph  ->  K  e.  ( ZZ>= `  M ) )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  K ) )   &    |-  ( ph  ->  ( 
 seq M (  .+  ,  F ) `  K )  e.  S )   &    |-  (
 ( ph  /\  x  e.  ( ( K  +  1 ) ... N ) )  ->  ( F `
  x )  =  Z )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M ) )  ->  ( F `  x )  e.  S )   &    |-  (
 ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ( x  .+  y )  e.  S )   =>    |-  ( ph  ->  ( 
 seq M (  .+  ,  F ) `  K )  =  (  seq M (  .+  ,  F ) `  N ) )
 
Theoremseq3homo 10466* Apply a homomorphism to a sequence. (Contributed by Jim Kingdon, 10-Oct-2022.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M )
 )  ->  ( F `  x )  e.  S )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( H `  ( x  .+  y
 ) )  =  ( ( H `  x ) Q ( H `  y ) ) )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M )
 )  ->  ( H `  ( F `  x ) )  =  ( G `  x ) )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M )
 )  ->  ( G `  x )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x Q y )  e.  S )   =>    |-  ( ph  ->  ( H `  (  seq M (  .+  ,  F ) `
  N ) )  =  (  seq M ( Q ,  G ) `
  N ) )
 
Theoremseq3z 10467* If the operation  .+ has an absorbing element  Z (a.k.a. zero element), then any sequence containing a  Z evaluates to  Z. (Contributed by Mario Carneiro, 27-May-2014.) (Revised by Jim Kingdon, 23-Apr-2023.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M )
 )  ->  ( F `  x )  e.  S )   &    |-  ( ( ph  /\  x  e.  S )  ->  ( Z  .+  x )  =  Z )   &    |-  ( ( ph  /\  x  e.  S ) 
 ->  ( x  .+  Z )  =  Z )   &    |-  ( ph  ->  K  e.  ( M ... N ) )   &    |-  ( ph  ->  ( F `  K )  =  Z )   =>    |-  ( ph  ->  (  seq M (  .+  ,  F ) `  N )  =  Z )
 
Theoremseqfeq3 10468* Equality of series under different addition operations which agree on an additively closed subset. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by Mario Carneiro, 25-Apr-2016.)
 |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M ) )  ->  ( F `  x )  e.  S )   &    |-  (
 ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ( x  .+  y )  e.  S )   &    |-  (
 ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ( x  .+  y )  =  ( x Q y ) )   =>    |-  ( ph  ->  seq
 M (  .+  ,  F )  =  seq M ( Q ,  F ) )
 
Theoremseq3distr 10469* The distributive property for series. (Contributed by Jim Kingdon, 10-Oct-2022.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( C T ( x  .+  y ) )  =  ( ( C T x )  .+  ( C T y ) ) )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M ) )  ->  ( G `  x )  e.  S )   &    |-  (
 ( ph  /\  x  e.  ( ZZ>= `  M )
 )  ->  ( F `  x )  =  ( C T ( G `
  x ) ) )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ( x T y )  e.  S )   &    |-  ( ph  ->  C  e.  S )   =>    |-  ( ph  ->  ( 
 seq M (  .+  ,  F ) `  N )  =  ( C T (  seq M ( 
 .+  ,  G ) `  N ) ) )
 
Theoremser0 10470 The value of the partial sums in a zero-valued infinite series. (Contributed by Mario Carneiro, 31-Aug-2013.) (Revised by Mario Carneiro, 15-Dec-2014.)
 |-  Z  =  ( ZZ>= `  M )   =>    |-  ( N  e.  Z  ->  (  seq M (  +  ,  ( Z  X.  { 0 } ) ) `  N )  =  0 )
 
Theoremser0f 10471 A zero-valued infinite series is equal to the constant zero function. (Contributed by Mario Carneiro, 8-Feb-2014.)
 |-  Z  =  ( ZZ>= `  M )   =>    |-  ( M  e.  ZZ  ->  seq M (  +  ,  ( Z  X.  {
 0 } ) )  =  ( Z  X.  { 0 } ) )
 
Theoremfser0const 10472* Simplifying an expression which turns out just to be a constant zero sequence. (Contributed by Jim Kingdon, 16-Sep-2022.)
 |-  Z  =  ( ZZ>= `  M )   =>    |-  ( N  e.  Z  ->  ( n  e.  Z  |->  if ( n  <_  N ,  ( ( Z  X.  { 0 } ) `  n ) ,  0 ) )  =  ( Z  X.  { 0 } ) )
 
Theoremser3ge0 10473* A finite sum of nonnegative terms is nonnegative. (Contributed by Mario Carneiro, 8-Feb-2014.) (Revised by Mario Carneiro, 27-May-2014.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( F `  k )  e.  RR )   &    |-  ( ( ph  /\  k  e.  ( M ... N ) )  ->  0  <_  ( F `  k ) )   =>    |-  ( ph  ->  0  <_  (  seq M (  +  ,  F ) `
  N ) )
 
Theoremser3le 10474* Comparison of partial sums of two infinite series of reals. (Contributed by NM, 27-Dec-2005.) (Revised by Jim Kingdon, 23-Apr-2023.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( F `  k )  e.  RR )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( G `  k )  e.  RR )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( F `  k )  <_  ( G `  k ) )   =>    |-  ( ph  ->  (  seq M (  +  ,  F ) `  N )  <_  (  seq M (  +  ,  G ) `  N ) )
 
4.6.6  Integer powers
 
Syntaxcexp 10475 Extend class notation to include exponentiation of a complex number to an integer power.
 class  ^
 
Definitiondf-exp 10476* Define exponentiation to nonnegative integer powers. For example,  ( 5 ^ 2 )  =  2 5 (see ex-exp 13762).

This definition is not meant to be used directly; instead, exp0 10480 and expp1 10483 provide the standard recursive definition. The up-arrow notation is used by Donald Knuth for iterated exponentiation (Science 194, 1235-1242, 1976) and is convenient for us since we don't have superscripts.

10-Jun-2005: The definition was extended to include zero exponents, so that  0 ^ 0  =  1 per the convention of Definition 10-4.1 of [Gleason] p. 134 (see 0exp0e1 10481).

4-Jun-2014: The definition was extended to include negative integer exponents. For example,  ( -u 3 ^
-u 2 )  =  ( 1  /  9
) (ex-exp 13762). The case  x  =  0 ,  y  <  0 gives the value  ( 1  /  0 ), so we will avoid this case in our theorems. (Contributed by Raph Levien, 20-May-2004.) (Revised by NM, 15-Oct-2004.)

 |- 
 ^  =  ( x  e.  CC ,  y  e.  ZZ  |->  if ( y  =  0 ,  1 ,  if ( 0  < 
 y ,  (  seq 1 (  x.  ,  ( NN  X.  { x }
 ) ) `  y
 ) ,  ( 1 
 /  (  seq 1
 (  x.  ,  ( NN  X.  { x }
 ) ) `  -u y
 ) ) ) ) )
 
Theoremexp3vallem 10477 Lemma for exp3val 10478. If we take a complex number apart from zero and raise it to a positive integer power, the result is apart from zero. (Contributed by Jim Kingdon, 7-Jun-2020.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  A #  0 )   &    |-  ( ph  ->  N  e.  NN )   =>    |-  ( ph  ->  ( 
 seq 1 (  x. 
 ,  ( NN  X.  { A } ) ) `
  N ) #  0 )
 
Theoremexp3val 10478 Value of exponentiation to integer powers. (Contributed by Jim Kingdon, 7-Jun-2020.)
 |-  ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N )
 )  ->  ( A ^ N )  =  if ( N  =  0 ,  1 ,  if ( 0  <  N ,  (  seq 1
 (  x.  ,  ( NN  X.  { A }
 ) ) `  N ) ,  ( 1  /  (  seq 1
 (  x.  ,  ( NN  X.  { A }
 ) ) `  -u N ) ) ) ) )
 
Theoremexpnnval 10479 Value of exponentiation to positive integer powers. (Contributed by Mario Carneiro, 4-Jun-2014.)
 |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  ( A ^ N )  =  (  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `  N ) )
 
Theoremexp0 10480 Value of a complex number raised to the 0th power. Note that under our definition,  0 ^ 0  =  1 (0exp0e1 10481) , following the convention used by Gleason. Part of Definition 10-4.1 of [Gleason] p. 134. (Contributed by NM, 20-May-2004.) (Revised by Mario Carneiro, 4-Jun-2014.)
 |-  ( A  e.  CC  ->  ( A ^ 0
 )  =  1 )
 
Theorem0exp0e1 10481 The zeroth power of zero equals one. See comment of exp0 10480. (Contributed by David A. Wheeler, 8-Dec-2018.)
 |-  ( 0 ^ 0
 )  =  1
 
Theoremexp1 10482 Value of a complex number raised to the first power. (Contributed by NM, 20-Oct-2004.) (Revised by Mario Carneiro, 2-Jul-2013.)
 |-  ( A  e.  CC  ->  ( A ^ 1
 )  =  A )
 
Theoremexpp1 10483 Value of a complex number raised to a nonnegative integer power plus one. Part of Definition 10-4.1 of [Gleason] p. 134. (Contributed by NM, 20-May-2005.) (Revised by Mario Carneiro, 2-Jul-2013.)
 |-  ( ( A  e.  CC  /\  N  e.  NN0 )  ->  ( A ^
 ( N  +  1 ) )  =  ( ( A ^ N )  x.  A ) )
 
Theoremexpnegap0 10484 Value of a complex number raised to a negative integer power. (Contributed by Jim Kingdon, 8-Jun-2020.)
 |-  ( ( A  e.  CC  /\  A #  0  /\  N  e.  NN0 )  ->  ( A ^ -u N )  =  ( 1  /  ( A ^ N ) ) )
 
Theoremexpineg2 10485 Value of a complex number raised to a negative integer power. (Contributed by Jim Kingdon, 8-Jun-2020.)
 |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  CC  /\  -u N  e.  NN0 ) )  ->  ( A ^ N )  =  ( 1  /  ( A ^ -u N ) ) )
 
Theoremexpn1ap0 10486 A number to the negative one power is the reciprocal. (Contributed by Jim Kingdon, 8-Jun-2020.)
 |-  ( ( A  e.  CC  /\  A #  0 ) 
 ->  ( A ^ -u 1
 )  =  ( 1 
 /  A ) )
 
Theoremexpcllem 10487* Lemma for proving nonnegative integer exponentiation closure laws. (Contributed by NM, 14-Dec-2005.)
 |-  F  C_  CC   &    |-  ( ( x  e.  F  /\  y  e.  F )  ->  ( x  x.  y )  e.  F )   &    |-  1  e.  F   =>    |-  (
 ( A  e.  F  /\  B  e.  NN0 )  ->  ( A ^ B )  e.  F )
 
Theoremexpcl2lemap 10488* Lemma for proving integer exponentiation closure laws. (Contributed by Jim Kingdon, 8-Jun-2020.)
 |-  F  C_  CC   &    |-  ( ( x  e.  F  /\  y  e.  F )  ->  ( x  x.  y )  e.  F )   &    |-  1  e.  F   &    |-  (
 ( x  e.  F  /\  x #  0 )  ->  ( 1  /  x )  e.  F )   =>    |-  (
 ( A  e.  F  /\  A #  0  /\  B  e.  ZZ )  ->  ( A ^ B )  e.  F )
 
Theoremnnexpcl 10489 Closure of exponentiation of nonnegative integers. (Contributed by NM, 16-Dec-2005.)
 |-  ( ( A  e.  NN  /\  N  e.  NN0 )  ->  ( A ^ N )  e.  NN )
 
Theoremnn0expcl 10490 Closure of exponentiation of nonnegative integers. (Contributed by NM, 14-Dec-2005.)
 |-  ( ( A  e.  NN0  /\  N  e.  NN0 )  ->  ( A ^ N )  e.  NN0 )
 
Theoremzexpcl 10491 Closure of exponentiation of integers. (Contributed by NM, 16-Dec-2005.)
 |-  ( ( A  e.  ZZ  /\  N  e.  NN0 )  ->  ( A ^ N )  e.  ZZ )
 
Theoremqexpcl 10492 Closure of exponentiation of rationals. (Contributed by NM, 16-Dec-2005.)
 |-  ( ( A  e.  QQ  /\  N  e.  NN0 )  ->  ( A ^ N )  e.  QQ )
 
Theoremreexpcl 10493 Closure of exponentiation of reals. (Contributed by NM, 14-Dec-2005.)
 |-  ( ( A  e.  RR  /\  N  e.  NN0 )  ->  ( A ^ N )  e.  RR )
 
Theoremexpcl 10494 Closure law for nonnegative integer exponentiation. (Contributed by NM, 26-May-2005.)
 |-  ( ( A  e.  CC  /\  N  e.  NN0 )  ->  ( A ^ N )  e.  CC )
 
Theoremrpexpcl 10495 Closure law for exponentiation of positive reals. (Contributed by NM, 24-Feb-2008.) (Revised by Mario Carneiro, 9-Sep-2014.)
 |-  ( ( A  e.  RR+  /\  N  e.  ZZ )  ->  ( A ^ N )  e.  RR+ )
 
Theoremreexpclzap 10496 Closure of exponentiation of reals. (Contributed by Jim Kingdon, 9-Jun-2020.)
 |-  ( ( A  e.  RR  /\  A #  0  /\  N  e.  ZZ )  ->  ( A ^ N )  e.  RR )
 
Theoremqexpclz 10497 Closure of exponentiation of rational numbers. (Contributed by Mario Carneiro, 9-Sep-2014.)
 |-  ( ( A  e.  QQ  /\  A  =/=  0  /\  N  e.  ZZ )  ->  ( A ^ N )  e.  QQ )
 
Theoremm1expcl2 10498 Closure of exponentiation of negative one. (Contributed by Mario Carneiro, 18-Jun-2015.)
 |-  ( N  e.  ZZ  ->  ( -u 1 ^ N )  e.  { -u 1 ,  1 } )
 
Theoremm1expcl 10499 Closure of exponentiation of negative one. (Contributed by Mario Carneiro, 18-Jun-2015.)
 |-  ( N  e.  ZZ  ->  ( -u 1 ^ N )  e.  ZZ )
 
Theoremexpclzaplem 10500* Closure law for integer exponentiation. Lemma for expclzap 10501 and expap0i 10508. (Contributed by Jim Kingdon, 9-Jun-2020.)
 |-  ( ( A  e.  CC  /\  A #  0  /\  N  e.  ZZ )  ->  ( A ^ N )  e.  { z  e.  CC  |  z #  0 } )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14113
  Copyright terms: Public domain < Previous  Next >