ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seqeq123d GIF version

Theorem seqeq123d 10665
Description: Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.)
Hypotheses
Ref Expression
seqeq123d.1 (𝜑𝑀 = 𝑁)
seqeq123d.2 (𝜑+ = 𝑄)
seqeq123d.3 (𝜑𝐹 = 𝐺)
Assertion
Ref Expression
seqeq123d (𝜑 → seq𝑀( + , 𝐹) = seq𝑁(𝑄, 𝐺))

Proof of Theorem seqeq123d
StepHypRef Expression
1 seqeq123d.1 . . 3 (𝜑𝑀 = 𝑁)
21seqeq1d 10662 . 2 (𝜑 → seq𝑀( + , 𝐹) = seq𝑁( + , 𝐹))
3 seqeq123d.2 . . 3 (𝜑+ = 𝑄)
43seqeq2d 10663 . 2 (𝜑 → seq𝑁( + , 𝐹) = seq𝑁(𝑄, 𝐹))
5 seqeq123d.3 . . 3 (𝜑𝐹 = 𝐺)
65seqeq3d 10664 . 2 (𝜑 → seq𝑁(𝑄, 𝐹) = seq𝑁(𝑄, 𝐺))
72, 4, 63eqtrd 2266 1 (𝜑 → seq𝑀( + , 𝐹) = seq𝑁(𝑄, 𝐺))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  seqcseq 10656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-mpt 4146  df-cnv 4724  df-dm 4726  df-rn 4727  df-res 4728  df-iota 5274  df-fv 5322  df-ov 5997  df-oprab 5998  df-mpo 5999  df-recs 6441  df-frec 6527  df-seqfrec 10657
This theorem is referenced by:  igsumvalx  13408
  Copyright terms: Public domain W3C validator