![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > seqeq123d | GIF version |
Description: Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.) |
Ref | Expression |
---|---|
seqeq123d.1 | ⊢ (𝜑 → 𝑀 = 𝑁) |
seqeq123d.2 | ⊢ (𝜑 → + = 𝑄) |
seqeq123d.3 | ⊢ (𝜑 → 𝐹 = 𝐺) |
Ref | Expression |
---|---|
seqeq123d | ⊢ (𝜑 → seq𝑀( + , 𝐹) = seq𝑁(𝑄, 𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | seqeq123d.1 | . . 3 ⊢ (𝜑 → 𝑀 = 𝑁) | |
2 | 1 | seqeq1d 10524 | . 2 ⊢ (𝜑 → seq𝑀( + , 𝐹) = seq𝑁( + , 𝐹)) |
3 | seqeq123d.2 | . . 3 ⊢ (𝜑 → + = 𝑄) | |
4 | 3 | seqeq2d 10525 | . 2 ⊢ (𝜑 → seq𝑁( + , 𝐹) = seq𝑁(𝑄, 𝐹)) |
5 | seqeq123d.3 | . . 3 ⊢ (𝜑 → 𝐹 = 𝐺) | |
6 | 5 | seqeq3d 10526 | . 2 ⊢ (𝜑 → seq𝑁(𝑄, 𝐹) = seq𝑁(𝑄, 𝐺)) |
7 | 2, 4, 6 | 3eqtrd 2230 | 1 ⊢ (𝜑 → seq𝑀( + , 𝐹) = seq𝑁(𝑄, 𝐺)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 seqcseq 10518 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-mpt 4092 df-cnv 4667 df-dm 4669 df-rn 4670 df-res 4671 df-iota 5215 df-fv 5262 df-ov 5921 df-oprab 5922 df-mpo 5923 df-recs 6358 df-frec 6444 df-seqfrec 10519 |
This theorem is referenced by: igsumvalx 12972 |
Copyright terms: Public domain | W3C validator |