| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > seqeq123d | GIF version | ||
| Description: Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.) |
| Ref | Expression |
|---|---|
| seqeq123d.1 | ⊢ (𝜑 → 𝑀 = 𝑁) |
| seqeq123d.2 | ⊢ (𝜑 → + = 𝑄) |
| seqeq123d.3 | ⊢ (𝜑 → 𝐹 = 𝐺) |
| Ref | Expression |
|---|---|
| seqeq123d | ⊢ (𝜑 → seq𝑀( + , 𝐹) = seq𝑁(𝑄, 𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqeq123d.1 | . . 3 ⊢ (𝜑 → 𝑀 = 𝑁) | |
| 2 | 1 | seqeq1d 10605 | . 2 ⊢ (𝜑 → seq𝑀( + , 𝐹) = seq𝑁( + , 𝐹)) |
| 3 | seqeq123d.2 | . . 3 ⊢ (𝜑 → + = 𝑄) | |
| 4 | 3 | seqeq2d 10606 | . 2 ⊢ (𝜑 → seq𝑁( + , 𝐹) = seq𝑁(𝑄, 𝐹)) |
| 5 | seqeq123d.3 | . . 3 ⊢ (𝜑 → 𝐹 = 𝐺) | |
| 6 | 5 | seqeq3d 10607 | . 2 ⊢ (𝜑 → seq𝑁(𝑄, 𝐹) = seq𝑁(𝑄, 𝐺)) |
| 7 | 2, 4, 6 | 3eqtrd 2243 | 1 ⊢ (𝜑 → seq𝑀( + , 𝐹) = seq𝑁(𝑄, 𝐺)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 seqcseq 10599 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3171 df-in 3173 df-ss 3180 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-br 4048 df-opab 4110 df-mpt 4111 df-cnv 4687 df-dm 4689 df-rn 4690 df-res 4691 df-iota 5237 df-fv 5284 df-ov 5954 df-oprab 5955 df-mpo 5956 df-recs 6398 df-frec 6484 df-seqfrec 10600 |
| This theorem is referenced by: igsumvalx 13265 |
| Copyright terms: Public domain | W3C validator |