ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seqeq3d Unicode version

Theorem seqeq3d 10388
Description: Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.)
Hypothesis
Ref Expression
seqeqd.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
seqeq3d  |-  ( ph  ->  seq M (  .+  ,  A )  =  seq M (  .+  ,  B ) )

Proof of Theorem seqeq3d
StepHypRef Expression
1 seqeqd.1 . 2  |-  ( ph  ->  A  =  B )
2 seqeq3 10385 . 2  |-  ( A  =  B  ->  seq M (  .+  ,  A )  =  seq M (  .+  ,  B ) )
31, 2syl 14 1  |-  ( ph  ->  seq M (  .+  ,  A )  =  seq M (  .+  ,  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    seqcseq 10380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-cnv 4612  df-dm 4614  df-rn 4615  df-res 4616  df-iota 5153  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-recs 6273  df-frec 6359  df-seqfrec 10381
This theorem is referenced by:  seqeq123d  10389  seq3f1olemstep  10436  seq3f1olemp  10437  exp3val  10457  sumeq1  11296  sumeq2  11300  summodc  11324  zsumdc  11325  fsum3  11328  isumz  11330  prodeq1f  11493  prodeq2w  11497  prodeq2  11498  prodmodc  11519  zproddc  11520  fprodseq  11524  prod1dc  11527  lgsval  13545  lgsval4  13561  lgsneg  13565  lgsmod  13567
  Copyright terms: Public domain W3C validator