ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seqeq3d Unicode version

Theorem seqeq3d 10549
Description: Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.)
Hypothesis
Ref Expression
seqeqd.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
seqeq3d  |-  ( ph  ->  seq M (  .+  ,  A )  =  seq M (  .+  ,  B ) )

Proof of Theorem seqeq3d
StepHypRef Expression
1 seqeqd.1 . 2  |-  ( ph  ->  A  =  B )
2 seqeq3 10546 . 2  |-  ( A  =  B  ->  seq M (  .+  ,  A )  =  seq M (  .+  ,  B ) )
31, 2syl 14 1  |-  ( ph  ->  seq M (  .+  ,  A )  =  seq M (  .+  ,  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    seqcseq 10541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-mpt 4097  df-cnv 4672  df-dm 4674  df-rn 4675  df-res 4676  df-iota 5220  df-fv 5267  df-ov 5926  df-oprab 5927  df-mpo 5928  df-recs 6364  df-frec 6450  df-seqfrec 10542
This theorem is referenced by:  seqeq123d  10550  seq3f1olemstep  10608  seq3f1olemp  10609  seqf1oglem2  10614  seqf1og  10615  exp3val  10635  sumeq1  11522  sumeq2  11526  summodc  11550  zsumdc  11551  fsum3  11554  isumz  11556  prodeq1f  11719  prodeq2w  11723  prodeq2  11724  prodmodc  11745  zproddc  11746  fprodseq  11750  prod1dc  11753  mulgval  13262  lgsval  15255  lgsval4  15271  lgsneg  15275  lgsmod  15277
  Copyright terms: Public domain W3C validator