| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > seqeq3d | Unicode version | ||
| Description: Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.) |
| Ref | Expression |
|---|---|
| seqeqd.1 |
|
| Ref | Expression |
|---|---|
| seqeq3d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqeqd.1 |
. 2
| |
| 2 | seqeq3 10546 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-mpt 4097 df-cnv 4672 df-dm 4674 df-rn 4675 df-res 4676 df-iota 5220 df-fv 5267 df-ov 5926 df-oprab 5927 df-mpo 5928 df-recs 6364 df-frec 6450 df-seqfrec 10542 |
| This theorem is referenced by: seqeq123d 10550 seq3f1olemstep 10608 seq3f1olemp 10609 seqf1oglem2 10614 seqf1og 10615 exp3val 10635 sumeq1 11522 sumeq2 11526 summodc 11550 zsumdc 11551 fsum3 11554 isumz 11556 prodeq1f 11719 prodeq2w 11723 prodeq2 11724 prodmodc 11745 zproddc 11746 fprodseq 11750 prod1dc 11753 mulgval 13262 lgsval 15255 lgsval4 15271 lgsneg 15275 lgsmod 15277 |
| Copyright terms: Public domain | W3C validator |