ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seqeq3d Unicode version

Theorem seqeq3d 10566
Description: Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.)
Hypothesis
Ref Expression
seqeqd.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
seqeq3d  |-  ( ph  ->  seq M (  .+  ,  A )  =  seq M (  .+  ,  B ) )

Proof of Theorem seqeq3d
StepHypRef Expression
1 seqeqd.1 . 2  |-  ( ph  ->  A  =  B )
2 seqeq3 10563 . 2  |-  ( A  =  B  ->  seq M (  .+  ,  A )  =  seq M (  .+  ,  B ) )
31, 2syl 14 1  |-  ( ph  ->  seq M (  .+  ,  A )  =  seq M (  .+  ,  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    seqcseq 10558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-mpt 4097  df-cnv 4672  df-dm 4674  df-rn 4675  df-res 4676  df-iota 5220  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-recs 6372  df-frec 6458  df-seqfrec 10559
This theorem is referenced by:  seqeq123d  10567  seq3f1olemstep  10625  seq3f1olemp  10626  seqf1oglem2  10631  seqf1og  10632  exp3val  10652  sumeq1  11539  sumeq2  11543  summodc  11567  zsumdc  11568  fsum3  11571  isumz  11573  prodeq1f  11736  prodeq2w  11740  prodeq2  11741  prodmodc  11762  zproddc  11763  fprodseq  11767  prod1dc  11770  mulgval  13330  lgsval  15331  lgsval4  15347  lgsneg  15351  lgsmod  15353
  Copyright terms: Public domain W3C validator