Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > seqeq3d | Unicode version |
Description: Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.) |
Ref | Expression |
---|---|
seqeqd.1 |
Ref | Expression |
---|---|
seqeq3d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | seqeqd.1 | . 2 | |
2 | seqeq3 10406 | . 2 | |
3 | 1, 2 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1348 cseq 10401 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-cnv 4619 df-dm 4621 df-rn 4622 df-res 4623 df-iota 5160 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-recs 6284 df-frec 6370 df-seqfrec 10402 |
This theorem is referenced by: seqeq123d 10410 seq3f1olemstep 10457 seq3f1olemp 10458 exp3val 10478 sumeq1 11318 sumeq2 11322 summodc 11346 zsumdc 11347 fsum3 11350 isumz 11352 prodeq1f 11515 prodeq2w 11519 prodeq2 11520 prodmodc 11541 zproddc 11542 fprodseq 11546 prod1dc 11549 lgsval 13699 lgsval4 13715 lgsneg 13719 lgsmod 13721 |
Copyright terms: Public domain | W3C validator |