| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > seqeq3d | Unicode version | ||
| Description: Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.) |
| Ref | Expression |
|---|---|
| seqeqd.1 |
|
| Ref | Expression |
|---|---|
| seqeq3d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqeqd.1 |
. 2
| |
| 2 | seqeq3 10669 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-mpt 4146 df-cnv 4726 df-dm 4728 df-rn 4729 df-res 4730 df-iota 5277 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-recs 6449 df-frec 6535 df-seqfrec 10665 |
| This theorem is referenced by: seqeq123d 10673 seq3f1olemstep 10731 seq3f1olemp 10732 seqf1oglem2 10737 seqf1og 10738 exp3val 10758 sumeq1 11861 sumeq2 11865 summodc 11889 zsumdc 11890 fsum3 11893 isumz 11895 prodeq1f 12058 prodeq2w 12062 prodeq2 12063 prodmodc 12084 zproddc 12085 fprodseq 12089 prod1dc 12092 mulgval 13654 lgsval 15677 lgsval4 15693 lgsneg 15697 lgsmod 15699 |
| Copyright terms: Public domain | W3C validator |