| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > seqeq3d | Unicode version | ||
| Description: Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.) |
| Ref | Expression |
|---|---|
| seqeqd.1 |
|
| Ref | Expression |
|---|---|
| seqeq3d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqeqd.1 |
. 2
| |
| 2 | seqeq3 10563 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-mpt 4097 df-cnv 4672 df-dm 4674 df-rn 4675 df-res 4676 df-iota 5220 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-recs 6372 df-frec 6458 df-seqfrec 10559 |
| This theorem is referenced by: seqeq123d 10567 seq3f1olemstep 10625 seq3f1olemp 10626 seqf1oglem2 10631 seqf1og 10632 exp3val 10652 sumeq1 11539 sumeq2 11543 summodc 11567 zsumdc 11568 fsum3 11571 isumz 11573 prodeq1f 11736 prodeq2w 11740 prodeq2 11741 prodmodc 11762 zproddc 11763 fprodseq 11767 prod1dc 11770 mulgval 13330 lgsval 15331 lgsval4 15347 lgsneg 15351 lgsmod 15353 |
| Copyright terms: Public domain | W3C validator |