Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > smofvon | Unicode version |
Description: If is a strictly monotone ordinal function, and is in the domain of , then the value of the function at is an ordinal. (Contributed by Andrew Salmon, 20-Nov-2011.) |
Ref | Expression |
---|---|
smofvon |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-smo 6223 | . . 3 | |
2 | 1 | simp1bi 997 | . 2 |
3 | 2 | ffvelrnda 5595 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wcel 2125 wral 2432 word 4317 con0 4318 cdm 4579 wf 5159 cfv 5163 wsmo 6222 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-pow 4130 ax-pr 4164 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ral 2437 df-rex 2438 df-v 2711 df-sbc 2934 df-un 3102 df-in 3104 df-ss 3111 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-br 3962 df-opab 4022 df-id 4248 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-rn 4590 df-iota 5128 df-fun 5165 df-fn 5166 df-f 5167 df-fv 5171 df-smo 6223 |
This theorem is referenced by: smoiun 6238 |
Copyright terms: Public domain | W3C validator |