ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  smofvon Unicode version

Theorem smofvon 6290
Description: If  B is a strictly monotone ordinal function, and  A is in the domain of  B, then the value of the function at 
A is an ordinal. (Contributed by Andrew Salmon, 20-Nov-2011.)
Assertion
Ref Expression
smofvon  |-  ( ( Smo  B  /\  A  e.  dom  B )  -> 
( B `  A
)  e.  On )

Proof of Theorem smofvon
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-smo 6277 . . 3  |-  ( Smo 
B  <->  ( B : dom  B --> On  /\  Ord  dom 
B  /\  A. x  e.  dom  B A. y  e.  dom  B ( x  e.  y  ->  ( B `  x )  e.  ( B `  y
) ) ) )
21simp1bi 1012 . 2  |-  ( Smo 
B  ->  B : dom  B --> On )
32ffvelcdmda 5643 1  |-  ( ( Smo  B  /\  A  e.  dom  B )  -> 
( B `  A
)  e.  On )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2146   A.wral 2453   Ord word 4356   Oncon0 4357   dom cdm 4620   -->wf 5204   ` cfv 5208   Smo wsmo 6276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-sbc 2961  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-opab 4060  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-fv 5216  df-smo 6277
This theorem is referenced by:  smoiun  6292
  Copyright terms: Public domain W3C validator