ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  smo0 GIF version

Theorem smo0 6356
Description: The null set is a strictly monotone ordinal function. (Contributed by Andrew Salmon, 20-Nov-2011.)
Assertion
Ref Expression
smo0 Smo ∅

Proof of Theorem smo0
StepHypRef Expression
1 ord0 4426 . . 3 Ord ∅
21iordsmo 6355 . 2 Smo ( I ↾ ∅)
3 res0 4950 . . 3 ( I ↾ ∅) = ∅
4 smoeq 6348 . . 3 (( I ↾ ∅) = ∅ → (Smo ( I ↾ ∅) ↔ Smo ∅))
53, 4ax-mp 5 . 2 (Smo ( I ↾ ∅) ↔ Smo ∅)
62, 5mpbi 145 1 Smo ∅
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1364  c0 3450   I cid 4323  cres 4665  Smo wsmo 6343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-smo 6344
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator