| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > recexprlemdisj | Unicode version | ||
| Description: |
| Ref | Expression |
|---|---|
| recexpr.1 |
|
| Ref | Expression |
|---|---|
| recexprlemdisj |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltsonq 7465 |
. . . . . 6
| |
| 2 | ltrelnq 7432 |
. . . . . 6
| |
| 3 | 1, 2 | son2lpi 5066 |
. . . . 5
|
| 4 | simprr 531 |
. . . . . . . . . 10
| |
| 5 | simplr 528 |
. . . . . . . . . 10
| |
| 6 | 4, 5 | jca 306 |
. . . . . . . . 9
|
| 7 | prop 7542 |
. . . . . . . . . . 11
| |
| 8 | prltlu 7554 |
. . . . . . . . . . 11
| |
| 9 | 7, 8 | syl3an1 1282 |
. . . . . . . . . 10
|
| 10 | 9 | 3expb 1206 |
. . . . . . . . 9
|
| 11 | 6, 10 | sylan2 286 |
. . . . . . . 8
|
| 12 | simprl 529 |
. . . . . . . . . . 11
| |
| 13 | simpll 527 |
. . . . . . . . . . 11
| |
| 14 | 1, 2 | sotri 5065 |
. . . . . . . . . . 11
|
| 15 | 12, 13, 14 | syl2anc 411 |
. . . . . . . . . 10
|
| 16 | ltrnqi 7488 |
. . . . . . . . . 10
| |
| 17 | 15, 16 | syl 14 |
. . . . . . . . 9
|
| 18 | 17 | adantl 277 |
. . . . . . . 8
|
| 19 | 11, 18 | jca 306 |
. . . . . . 7
|
| 20 | 19 | ex 115 |
. . . . . 6
|
| 21 | 20 | adantr 276 |
. . . . 5
|
| 22 | 3, 21 | mtoi 665 |
. . . 4
|
| 23 | 22 | alrimivv 1889 |
. . 3
|
| 24 | recexpr.1 |
. . . . . . . . 9
| |
| 25 | 24 | recexprlemell 7689 |
. . . . . . . 8
|
| 26 | 24 | recexprlemelu 7690 |
. . . . . . . 8
|
| 27 | 25, 26 | anbi12i 460 |
. . . . . . 7
|
| 28 | breq1 4036 |
. . . . . . . . . 10
| |
| 29 | fveq2 5558 |
. . . . . . . . . . 11
| |
| 30 | 29 | eleq1d 2265 |
. . . . . . . . . 10
|
| 31 | 28, 30 | anbi12d 473 |
. . . . . . . . 9
|
| 32 | 31 | cbvexv 1933 |
. . . . . . . 8
|
| 33 | 32 | anbi2i 457 |
. . . . . . 7
|
| 34 | 27, 33 | bitri 184 |
. . . . . 6
|
| 35 | eeanv 1951 |
. . . . . 6
| |
| 36 | 34, 35 | bitr4i 187 |
. . . . 5
|
| 37 | 36 | notbii 669 |
. . . 4
|
| 38 | alnex 1513 |
. . . . . 6
| |
| 39 | 38 | albii 1484 |
. . . . 5
|
| 40 | alnex 1513 |
. . . . 5
| |
| 41 | 39, 40 | bitri 184 |
. . . 4
|
| 42 | 37, 41 | bitr4i 187 |
. . 3
|
| 43 | 23, 42 | sylibr 134 |
. 2
|
| 44 | 43 | ralrimiva 2570 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-eprel 4324 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-irdg 6428 df-1o 6474 df-oadd 6478 df-omul 6479 df-er 6592 df-ec 6594 df-qs 6598 df-ni 7371 df-mi 7373 df-lti 7374 df-mpq 7412 df-enq 7414 df-nqqs 7415 df-mqqs 7417 df-1nqqs 7418 df-rq 7419 df-ltnqqs 7420 df-inp 7533 |
| This theorem is referenced by: recexprlempr 7699 |
| Copyright terms: Public domain | W3C validator |