ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexprlemdisj Unicode version

Theorem recexprlemdisj 7743
Description:  B is disjoint. Lemma for recexpr 7751. (Contributed by Jim Kingdon, 27-Dec-2019.)
Hypothesis
Ref Expression
recexpr.1  |-  B  = 
<. { x  |  E. y ( x  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  {
x  |  E. y
( y  <Q  x  /\  ( *Q `  y
)  e.  ( 1st `  A ) ) }
>.
Assertion
Ref Expression
recexprlemdisj  |-  ( A  e.  P.  ->  A. q  e.  Q.  -.  ( q  e.  ( 1st `  B
)  /\  q  e.  ( 2nd `  B ) ) )
Distinct variable groups:    x, q, y, A    B, q, x, y

Proof of Theorem recexprlemdisj
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 ltsonq 7511 . . . . . 6  |-  <Q  Or  Q.
2 ltrelnq 7478 . . . . . 6  |-  <Q  C_  ( Q.  X.  Q. )
31, 2son2lpi 5079 . . . . 5  |-  -.  (
( *Q `  z
)  <Q  ( *Q `  y )  /\  ( *Q `  y )  <Q 
( *Q `  z
) )
4 simprr 531 . . . . . . . . . 10  |-  ( ( ( q  <Q  y  /\  ( *Q `  y
)  e.  ( 2nd `  A ) )  /\  ( z  <Q  q  /\  ( *Q `  z
)  e.  ( 1st `  A ) ) )  ->  ( *Q `  z )  e.  ( 1st `  A ) )
5 simplr 528 . . . . . . . . . 10  |-  ( ( ( q  <Q  y  /\  ( *Q `  y
)  e.  ( 2nd `  A ) )  /\  ( z  <Q  q  /\  ( *Q `  z
)  e.  ( 1st `  A ) ) )  ->  ( *Q `  y )  e.  ( 2nd `  A ) )
64, 5jca 306 . . . . . . . . 9  |-  ( ( ( q  <Q  y  /\  ( *Q `  y
)  e.  ( 2nd `  A ) )  /\  ( z  <Q  q  /\  ( *Q `  z
)  e.  ( 1st `  A ) ) )  ->  ( ( *Q
`  z )  e.  ( 1st `  A
)  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) )
7 prop 7588 . . . . . . . . . . 11  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
8 prltlu 7600 . . . . . . . . . . 11  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  ( *Q `  z
)  e.  ( 1st `  A )  /\  ( *Q `  y )  e.  ( 2nd `  A
) )  ->  ( *Q `  z )  <Q 
( *Q `  y
) )
97, 8syl3an1 1283 . . . . . . . . . 10  |-  ( ( A  e.  P.  /\  ( *Q `  z )  e.  ( 1st `  A
)  /\  ( *Q `  y )  e.  ( 2nd `  A ) )  ->  ( *Q `  z )  <Q  ( *Q `  y ) )
1093expb 1207 . . . . . . . . 9  |-  ( ( A  e.  P.  /\  ( ( *Q `  z )  e.  ( 1st `  A )  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) )  ->  ( *Q `  z )  <Q 
( *Q `  y
) )
116, 10sylan2 286 . . . . . . . 8  |-  ( ( A  e.  P.  /\  ( ( q  <Q 
y  /\  ( *Q `  y )  e.  ( 2nd `  A ) )  /\  ( z 
<Q  q  /\  ( *Q `  z )  e.  ( 1st `  A
) ) ) )  ->  ( *Q `  z )  <Q  ( *Q `  y ) )
12 simprl 529 . . . . . . . . . . 11  |-  ( ( ( q  <Q  y  /\  ( *Q `  y
)  e.  ( 2nd `  A ) )  /\  ( z  <Q  q  /\  ( *Q `  z
)  e.  ( 1st `  A ) ) )  ->  z  <Q  q
)
13 simpll 527 . . . . . . . . . . 11  |-  ( ( ( q  <Q  y  /\  ( *Q `  y
)  e.  ( 2nd `  A ) )  /\  ( z  <Q  q  /\  ( *Q `  z
)  e.  ( 1st `  A ) ) )  ->  q  <Q  y
)
141, 2sotri 5078 . . . . . . . . . . 11  |-  ( ( z  <Q  q  /\  q  <Q  y )  -> 
z  <Q  y )
1512, 13, 14syl2anc 411 . . . . . . . . . 10  |-  ( ( ( q  <Q  y  /\  ( *Q `  y
)  e.  ( 2nd `  A ) )  /\  ( z  <Q  q  /\  ( *Q `  z
)  e.  ( 1st `  A ) ) )  ->  z  <Q  y
)
16 ltrnqi 7534 . . . . . . . . . 10  |-  ( z 
<Q  y  ->  ( *Q
`  y )  <Q 
( *Q `  z
) )
1715, 16syl 14 . . . . . . . . 9  |-  ( ( ( q  <Q  y  /\  ( *Q `  y
)  e.  ( 2nd `  A ) )  /\  ( z  <Q  q  /\  ( *Q `  z
)  e.  ( 1st `  A ) ) )  ->  ( *Q `  y )  <Q  ( *Q `  z ) )
1817adantl 277 . . . . . . . 8  |-  ( ( A  e.  P.  /\  ( ( q  <Q 
y  /\  ( *Q `  y )  e.  ( 2nd `  A ) )  /\  ( z 
<Q  q  /\  ( *Q `  z )  e.  ( 1st `  A
) ) ) )  ->  ( *Q `  y )  <Q  ( *Q `  z ) )
1911, 18jca 306 . . . . . . 7  |-  ( ( A  e.  P.  /\  ( ( q  <Q 
y  /\  ( *Q `  y )  e.  ( 2nd `  A ) )  /\  ( z 
<Q  q  /\  ( *Q `  z )  e.  ( 1st `  A
) ) ) )  ->  ( ( *Q
`  z )  <Q 
( *Q `  y
)  /\  ( *Q `  y )  <Q  ( *Q `  z ) ) )
2019ex 115 . . . . . 6  |-  ( A  e.  P.  ->  (
( ( q  <Q 
y  /\  ( *Q `  y )  e.  ( 2nd `  A ) )  /\  ( z 
<Q  q  /\  ( *Q `  z )  e.  ( 1st `  A
) ) )  -> 
( ( *Q `  z )  <Q  ( *Q `  y )  /\  ( *Q `  y ) 
<Q  ( *Q `  z
) ) ) )
2120adantr 276 . . . . 5  |-  ( ( A  e.  P.  /\  q  e.  Q. )  ->  ( ( ( q 
<Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A
) )  /\  (
z  <Q  q  /\  ( *Q `  z )  e.  ( 1st `  A
) ) )  -> 
( ( *Q `  z )  <Q  ( *Q `  y )  /\  ( *Q `  y ) 
<Q  ( *Q `  z
) ) ) )
223, 21mtoi 666 . . . 4  |-  ( ( A  e.  P.  /\  q  e.  Q. )  ->  -.  ( ( q 
<Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A
) )  /\  (
z  <Q  q  /\  ( *Q `  z )  e.  ( 1st `  A
) ) ) )
2322alrimivv 1898 . . 3  |-  ( ( A  e.  P.  /\  q  e.  Q. )  ->  A. y A. z  -.  ( ( q  <Q 
y  /\  ( *Q `  y )  e.  ( 2nd `  A ) )  /\  ( z 
<Q  q  /\  ( *Q `  z )  e.  ( 1st `  A
) ) ) )
24 recexpr.1 . . . . . . . . 9  |-  B  = 
<. { x  |  E. y ( x  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  {
x  |  E. y
( y  <Q  x  /\  ( *Q `  y
)  e.  ( 1st `  A ) ) }
>.
2524recexprlemell 7735 . . . . . . . 8  |-  ( q  e.  ( 1st `  B
)  <->  E. y ( q 
<Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A
) ) )
2624recexprlemelu 7736 . . . . . . . 8  |-  ( q  e.  ( 2nd `  B
)  <->  E. y ( y 
<Q  q  /\  ( *Q `  y )  e.  ( 1st `  A
) ) )
2725, 26anbi12i 460 . . . . . . 7  |-  ( ( q  e.  ( 1st `  B )  /\  q  e.  ( 2nd `  B
) )  <->  ( E. y ( q  <Q 
y  /\  ( *Q `  y )  e.  ( 2nd `  A ) )  /\  E. y
( y  <Q  q  /\  ( *Q `  y
)  e.  ( 1st `  A ) ) ) )
28 breq1 4047 . . . . . . . . . 10  |-  ( y  =  z  ->  (
y  <Q  q  <->  z  <Q  q ) )
29 fveq2 5576 . . . . . . . . . . 11  |-  ( y  =  z  ->  ( *Q `  y )  =  ( *Q `  z
) )
3029eleq1d 2274 . . . . . . . . . 10  |-  ( y  =  z  ->  (
( *Q `  y
)  e.  ( 1st `  A )  <->  ( *Q `  z )  e.  ( 1st `  A ) ) )
3128, 30anbi12d 473 . . . . . . . . 9  |-  ( y  =  z  ->  (
( y  <Q  q  /\  ( *Q `  y
)  e.  ( 1st `  A ) )  <->  ( z  <Q  q  /\  ( *Q
`  z )  e.  ( 1st `  A
) ) ) )
3231cbvexv 1942 . . . . . . . 8  |-  ( E. y ( y  <Q 
q  /\  ( *Q `  y )  e.  ( 1st `  A ) )  <->  E. z ( z 
<Q  q  /\  ( *Q `  z )  e.  ( 1st `  A
) ) )
3332anbi2i 457 . . . . . . 7  |-  ( ( E. y ( q 
<Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A
) )  /\  E. y ( y  <Q 
q  /\  ( *Q `  y )  e.  ( 1st `  A ) ) )  <->  ( E. y ( q  <Q 
y  /\  ( *Q `  y )  e.  ( 2nd `  A ) )  /\  E. z
( z  <Q  q  /\  ( *Q `  z
)  e.  ( 1st `  A ) ) ) )
3427, 33bitri 184 . . . . . 6  |-  ( ( q  e.  ( 1st `  B )  /\  q  e.  ( 2nd `  B
) )  <->  ( E. y ( q  <Q 
y  /\  ( *Q `  y )  e.  ( 2nd `  A ) )  /\  E. z
( z  <Q  q  /\  ( *Q `  z
)  e.  ( 1st `  A ) ) ) )
35 eeanv 1960 . . . . . 6  |-  ( E. y E. z ( ( q  <Q  y  /\  ( *Q `  y
)  e.  ( 2nd `  A ) )  /\  ( z  <Q  q  /\  ( *Q `  z
)  e.  ( 1st `  A ) ) )  <-> 
( E. y ( q  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A
) )  /\  E. z ( z  <Q 
q  /\  ( *Q `  z )  e.  ( 1st `  A ) ) ) )
3634, 35bitr4i 187 . . . . 5  |-  ( ( q  e.  ( 1st `  B )  /\  q  e.  ( 2nd `  B
) )  <->  E. y E. z ( ( q 
<Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A
) )  /\  (
z  <Q  q  /\  ( *Q `  z )  e.  ( 1st `  A
) ) ) )
3736notbii 670 . . . 4  |-  ( -.  ( q  e.  ( 1st `  B )  /\  q  e.  ( 2nd `  B ) )  <->  -.  E. y E. z ( ( q 
<Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A
) )  /\  (
z  <Q  q  /\  ( *Q `  z )  e.  ( 1st `  A
) ) ) )
38 alnex 1522 . . . . . 6  |-  ( A. z  -.  ( ( q 
<Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A
) )  /\  (
z  <Q  q  /\  ( *Q `  z )  e.  ( 1st `  A
) ) )  <->  -.  E. z
( ( q  <Q 
y  /\  ( *Q `  y )  e.  ( 2nd `  A ) )  /\  ( z 
<Q  q  /\  ( *Q `  z )  e.  ( 1st `  A
) ) ) )
3938albii 1493 . . . . 5  |-  ( A. y A. z  -.  (
( q  <Q  y  /\  ( *Q `  y
)  e.  ( 2nd `  A ) )  /\  ( z  <Q  q  /\  ( *Q `  z
)  e.  ( 1st `  A ) ) )  <->  A. y  -.  E. z
( ( q  <Q 
y  /\  ( *Q `  y )  e.  ( 2nd `  A ) )  /\  ( z 
<Q  q  /\  ( *Q `  z )  e.  ( 1st `  A
) ) ) )
40 alnex 1522 . . . . 5  |-  ( A. y  -.  E. z ( ( q  <Q  y  /\  ( *Q `  y
)  e.  ( 2nd `  A ) )  /\  ( z  <Q  q  /\  ( *Q `  z
)  e.  ( 1st `  A ) ) )  <->  -.  E. y E. z
( ( q  <Q 
y  /\  ( *Q `  y )  e.  ( 2nd `  A ) )  /\  ( z 
<Q  q  /\  ( *Q `  z )  e.  ( 1st `  A
) ) ) )
4139, 40bitri 184 . . . 4  |-  ( A. y A. z  -.  (
( q  <Q  y  /\  ( *Q `  y
)  e.  ( 2nd `  A ) )  /\  ( z  <Q  q  /\  ( *Q `  z
)  e.  ( 1st `  A ) ) )  <->  -.  E. y E. z
( ( q  <Q 
y  /\  ( *Q `  y )  e.  ( 2nd `  A ) )  /\  ( z 
<Q  q  /\  ( *Q `  z )  e.  ( 1st `  A
) ) ) )
4237, 41bitr4i 187 . . 3  |-  ( -.  ( q  e.  ( 1st `  B )  /\  q  e.  ( 2nd `  B ) )  <->  A. y A. z  -.  ( ( q  <Q 
y  /\  ( *Q `  y )  e.  ( 2nd `  A ) )  /\  ( z 
<Q  q  /\  ( *Q `  z )  e.  ( 1st `  A
) ) ) )
4323, 42sylibr 134 . 2  |-  ( ( A  e.  P.  /\  q  e.  Q. )  ->  -.  ( q  e.  ( 1st `  B
)  /\  q  e.  ( 2nd `  B ) ) )
4443ralrimiva 2579 1  |-  ( A  e.  P.  ->  A. q  e.  Q.  -.  ( q  e.  ( 1st `  B
)  /\  q  e.  ( 2nd `  B ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104   A.wal 1371    = wceq 1373   E.wex 1515    e. wcel 2176   {cab 2191   A.wral 2484   <.cop 3636   class class class wbr 4044   ` cfv 5271   1stc1st 6224   2ndc2nd 6225   Q.cnq 7393   *Qcrq 7397    <Q cltq 7398   P.cnp 7404
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-eprel 4336  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-irdg 6456  df-1o 6502  df-oadd 6506  df-omul 6507  df-er 6620  df-ec 6622  df-qs 6626  df-ni 7417  df-mi 7419  df-lti 7420  df-mpq 7458  df-enq 7460  df-nqqs 7461  df-mqqs 7463  df-1nqqs 7464  df-rq 7465  df-ltnqqs 7466  df-inp 7579
This theorem is referenced by:  recexprlempr  7745
  Copyright terms: Public domain W3C validator