| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > recexprlemdisj | Unicode version | ||
| Description: |
| Ref | Expression |
|---|---|
| recexpr.1 |
|
| Ref | Expression |
|---|---|
| recexprlemdisj |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltsonq 7511 |
. . . . . 6
| |
| 2 | ltrelnq 7478 |
. . . . . 6
| |
| 3 | 1, 2 | son2lpi 5079 |
. . . . 5
|
| 4 | simprr 531 |
. . . . . . . . . 10
| |
| 5 | simplr 528 |
. . . . . . . . . 10
| |
| 6 | 4, 5 | jca 306 |
. . . . . . . . 9
|
| 7 | prop 7588 |
. . . . . . . . . . 11
| |
| 8 | prltlu 7600 |
. . . . . . . . . . 11
| |
| 9 | 7, 8 | syl3an1 1283 |
. . . . . . . . . 10
|
| 10 | 9 | 3expb 1207 |
. . . . . . . . 9
|
| 11 | 6, 10 | sylan2 286 |
. . . . . . . 8
|
| 12 | simprl 529 |
. . . . . . . . . . 11
| |
| 13 | simpll 527 |
. . . . . . . . . . 11
| |
| 14 | 1, 2 | sotri 5078 |
. . . . . . . . . . 11
|
| 15 | 12, 13, 14 | syl2anc 411 |
. . . . . . . . . 10
|
| 16 | ltrnqi 7534 |
. . . . . . . . . 10
| |
| 17 | 15, 16 | syl 14 |
. . . . . . . . 9
|
| 18 | 17 | adantl 277 |
. . . . . . . 8
|
| 19 | 11, 18 | jca 306 |
. . . . . . 7
|
| 20 | 19 | ex 115 |
. . . . . 6
|
| 21 | 20 | adantr 276 |
. . . . 5
|
| 22 | 3, 21 | mtoi 666 |
. . . 4
|
| 23 | 22 | alrimivv 1898 |
. . 3
|
| 24 | recexpr.1 |
. . . . . . . . 9
| |
| 25 | 24 | recexprlemell 7735 |
. . . . . . . 8
|
| 26 | 24 | recexprlemelu 7736 |
. . . . . . . 8
|
| 27 | 25, 26 | anbi12i 460 |
. . . . . . 7
|
| 28 | breq1 4047 |
. . . . . . . . . 10
| |
| 29 | fveq2 5576 |
. . . . . . . . . . 11
| |
| 30 | 29 | eleq1d 2274 |
. . . . . . . . . 10
|
| 31 | 28, 30 | anbi12d 473 |
. . . . . . . . 9
|
| 32 | 31 | cbvexv 1942 |
. . . . . . . 8
|
| 33 | 32 | anbi2i 457 |
. . . . . . 7
|
| 34 | 27, 33 | bitri 184 |
. . . . . 6
|
| 35 | eeanv 1960 |
. . . . . 6
| |
| 36 | 34, 35 | bitr4i 187 |
. . . . 5
|
| 37 | 36 | notbii 670 |
. . . 4
|
| 38 | alnex 1522 |
. . . . . 6
| |
| 39 | 38 | albii 1493 |
. . . . 5
|
| 40 | alnex 1522 |
. . . . 5
| |
| 41 | 39, 40 | bitri 184 |
. . . 4
|
| 42 | 37, 41 | bitr4i 187 |
. . 3
|
| 43 | 23, 42 | sylibr 134 |
. 2
|
| 44 | 43 | ralrimiva 2579 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-iinf 4636 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-eprel 4336 df-id 4340 df-po 4343 df-iso 4344 df-iord 4413 df-on 4415 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-recs 6391 df-irdg 6456 df-1o 6502 df-oadd 6506 df-omul 6507 df-er 6620 df-ec 6622 df-qs 6626 df-ni 7417 df-mi 7419 df-lti 7420 df-mpq 7458 df-enq 7460 df-nqqs 7461 df-mqqs 7463 df-1nqqs 7464 df-rq 7465 df-ltnqqs 7466 df-inp 7579 |
| This theorem is referenced by: recexprlempr 7745 |
| Copyright terms: Public domain | W3C validator |