ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexprlemdisj Unicode version

Theorem recexprlemdisj 7714
Description:  B is disjoint. Lemma for recexpr 7722. (Contributed by Jim Kingdon, 27-Dec-2019.)
Hypothesis
Ref Expression
recexpr.1  |-  B  = 
<. { x  |  E. y ( x  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  {
x  |  E. y
( y  <Q  x  /\  ( *Q `  y
)  e.  ( 1st `  A ) ) }
>.
Assertion
Ref Expression
recexprlemdisj  |-  ( A  e.  P.  ->  A. q  e.  Q.  -.  ( q  e.  ( 1st `  B
)  /\  q  e.  ( 2nd `  B ) ) )
Distinct variable groups:    x, q, y, A    B, q, x, y

Proof of Theorem recexprlemdisj
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 ltsonq 7482 . . . . . 6  |-  <Q  Or  Q.
2 ltrelnq 7449 . . . . . 6  |-  <Q  C_  ( Q.  X.  Q. )
31, 2son2lpi 5067 . . . . 5  |-  -.  (
( *Q `  z
)  <Q  ( *Q `  y )  /\  ( *Q `  y )  <Q 
( *Q `  z
) )
4 simprr 531 . . . . . . . . . 10  |-  ( ( ( q  <Q  y  /\  ( *Q `  y
)  e.  ( 2nd `  A ) )  /\  ( z  <Q  q  /\  ( *Q `  z
)  e.  ( 1st `  A ) ) )  ->  ( *Q `  z )  e.  ( 1st `  A ) )
5 simplr 528 . . . . . . . . . 10  |-  ( ( ( q  <Q  y  /\  ( *Q `  y
)  e.  ( 2nd `  A ) )  /\  ( z  <Q  q  /\  ( *Q `  z
)  e.  ( 1st `  A ) ) )  ->  ( *Q `  y )  e.  ( 2nd `  A ) )
64, 5jca 306 . . . . . . . . 9  |-  ( ( ( q  <Q  y  /\  ( *Q `  y
)  e.  ( 2nd `  A ) )  /\  ( z  <Q  q  /\  ( *Q `  z
)  e.  ( 1st `  A ) ) )  ->  ( ( *Q
`  z )  e.  ( 1st `  A
)  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) )
7 prop 7559 . . . . . . . . . . 11  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
8 prltlu 7571 . . . . . . . . . . 11  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  ( *Q `  z
)  e.  ( 1st `  A )  /\  ( *Q `  y )  e.  ( 2nd `  A
) )  ->  ( *Q `  z )  <Q 
( *Q `  y
) )
97, 8syl3an1 1282 . . . . . . . . . 10  |-  ( ( A  e.  P.  /\  ( *Q `  z )  e.  ( 1st `  A
)  /\  ( *Q `  y )  e.  ( 2nd `  A ) )  ->  ( *Q `  z )  <Q  ( *Q `  y ) )
1093expb 1206 . . . . . . . . 9  |-  ( ( A  e.  P.  /\  ( ( *Q `  z )  e.  ( 1st `  A )  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) )  ->  ( *Q `  z )  <Q 
( *Q `  y
) )
116, 10sylan2 286 . . . . . . . 8  |-  ( ( A  e.  P.  /\  ( ( q  <Q 
y  /\  ( *Q `  y )  e.  ( 2nd `  A ) )  /\  ( z 
<Q  q  /\  ( *Q `  z )  e.  ( 1st `  A
) ) ) )  ->  ( *Q `  z )  <Q  ( *Q `  y ) )
12 simprl 529 . . . . . . . . . . 11  |-  ( ( ( q  <Q  y  /\  ( *Q `  y
)  e.  ( 2nd `  A ) )  /\  ( z  <Q  q  /\  ( *Q `  z
)  e.  ( 1st `  A ) ) )  ->  z  <Q  q
)
13 simpll 527 . . . . . . . . . . 11  |-  ( ( ( q  <Q  y  /\  ( *Q `  y
)  e.  ( 2nd `  A ) )  /\  ( z  <Q  q  /\  ( *Q `  z
)  e.  ( 1st `  A ) ) )  ->  q  <Q  y
)
141, 2sotri 5066 . . . . . . . . . . 11  |-  ( ( z  <Q  q  /\  q  <Q  y )  -> 
z  <Q  y )
1512, 13, 14syl2anc 411 . . . . . . . . . 10  |-  ( ( ( q  <Q  y  /\  ( *Q `  y
)  e.  ( 2nd `  A ) )  /\  ( z  <Q  q  /\  ( *Q `  z
)  e.  ( 1st `  A ) ) )  ->  z  <Q  y
)
16 ltrnqi 7505 . . . . . . . . . 10  |-  ( z 
<Q  y  ->  ( *Q
`  y )  <Q 
( *Q `  z
) )
1715, 16syl 14 . . . . . . . . 9  |-  ( ( ( q  <Q  y  /\  ( *Q `  y
)  e.  ( 2nd `  A ) )  /\  ( z  <Q  q  /\  ( *Q `  z
)  e.  ( 1st `  A ) ) )  ->  ( *Q `  y )  <Q  ( *Q `  z ) )
1817adantl 277 . . . . . . . 8  |-  ( ( A  e.  P.  /\  ( ( q  <Q 
y  /\  ( *Q `  y )  e.  ( 2nd `  A ) )  /\  ( z 
<Q  q  /\  ( *Q `  z )  e.  ( 1st `  A
) ) ) )  ->  ( *Q `  y )  <Q  ( *Q `  z ) )
1911, 18jca 306 . . . . . . 7  |-  ( ( A  e.  P.  /\  ( ( q  <Q 
y  /\  ( *Q `  y )  e.  ( 2nd `  A ) )  /\  ( z 
<Q  q  /\  ( *Q `  z )  e.  ( 1st `  A
) ) ) )  ->  ( ( *Q
`  z )  <Q 
( *Q `  y
)  /\  ( *Q `  y )  <Q  ( *Q `  z ) ) )
2019ex 115 . . . . . 6  |-  ( A  e.  P.  ->  (
( ( q  <Q 
y  /\  ( *Q `  y )  e.  ( 2nd `  A ) )  /\  ( z 
<Q  q  /\  ( *Q `  z )  e.  ( 1st `  A
) ) )  -> 
( ( *Q `  z )  <Q  ( *Q `  y )  /\  ( *Q `  y ) 
<Q  ( *Q `  z
) ) ) )
2120adantr 276 . . . . 5  |-  ( ( A  e.  P.  /\  q  e.  Q. )  ->  ( ( ( q 
<Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A
) )  /\  (
z  <Q  q  /\  ( *Q `  z )  e.  ( 1st `  A
) ) )  -> 
( ( *Q `  z )  <Q  ( *Q `  y )  /\  ( *Q `  y ) 
<Q  ( *Q `  z
) ) ) )
223, 21mtoi 665 . . . 4  |-  ( ( A  e.  P.  /\  q  e.  Q. )  ->  -.  ( ( q 
<Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A
) )  /\  (
z  <Q  q  /\  ( *Q `  z )  e.  ( 1st `  A
) ) ) )
2322alrimivv 1889 . . 3  |-  ( ( A  e.  P.  /\  q  e.  Q. )  ->  A. y A. z  -.  ( ( q  <Q 
y  /\  ( *Q `  y )  e.  ( 2nd `  A ) )  /\  ( z 
<Q  q  /\  ( *Q `  z )  e.  ( 1st `  A
) ) ) )
24 recexpr.1 . . . . . . . . 9  |-  B  = 
<. { x  |  E. y ( x  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  {
x  |  E. y
( y  <Q  x  /\  ( *Q `  y
)  e.  ( 1st `  A ) ) }
>.
2524recexprlemell 7706 . . . . . . . 8  |-  ( q  e.  ( 1st `  B
)  <->  E. y ( q 
<Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A
) ) )
2624recexprlemelu 7707 . . . . . . . 8  |-  ( q  e.  ( 2nd `  B
)  <->  E. y ( y 
<Q  q  /\  ( *Q `  y )  e.  ( 1st `  A
) ) )
2725, 26anbi12i 460 . . . . . . 7  |-  ( ( q  e.  ( 1st `  B )  /\  q  e.  ( 2nd `  B
) )  <->  ( E. y ( q  <Q 
y  /\  ( *Q `  y )  e.  ( 2nd `  A ) )  /\  E. y
( y  <Q  q  /\  ( *Q `  y
)  e.  ( 1st `  A ) ) ) )
28 breq1 4037 . . . . . . . . . 10  |-  ( y  =  z  ->  (
y  <Q  q  <->  z  <Q  q ) )
29 fveq2 5561 . . . . . . . . . . 11  |-  ( y  =  z  ->  ( *Q `  y )  =  ( *Q `  z
) )
3029eleq1d 2265 . . . . . . . . . 10  |-  ( y  =  z  ->  (
( *Q `  y
)  e.  ( 1st `  A )  <->  ( *Q `  z )  e.  ( 1st `  A ) ) )
3128, 30anbi12d 473 . . . . . . . . 9  |-  ( y  =  z  ->  (
( y  <Q  q  /\  ( *Q `  y
)  e.  ( 1st `  A ) )  <->  ( z  <Q  q  /\  ( *Q
`  z )  e.  ( 1st `  A
) ) ) )
3231cbvexv 1933 . . . . . . . 8  |-  ( E. y ( y  <Q 
q  /\  ( *Q `  y )  e.  ( 1st `  A ) )  <->  E. z ( z 
<Q  q  /\  ( *Q `  z )  e.  ( 1st `  A
) ) )
3332anbi2i 457 . . . . . . 7  |-  ( ( E. y ( q 
<Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A
) )  /\  E. y ( y  <Q 
q  /\  ( *Q `  y )  e.  ( 1st `  A ) ) )  <->  ( E. y ( q  <Q 
y  /\  ( *Q `  y )  e.  ( 2nd `  A ) )  /\  E. z
( z  <Q  q  /\  ( *Q `  z
)  e.  ( 1st `  A ) ) ) )
3427, 33bitri 184 . . . . . 6  |-  ( ( q  e.  ( 1st `  B )  /\  q  e.  ( 2nd `  B
) )  <->  ( E. y ( q  <Q 
y  /\  ( *Q `  y )  e.  ( 2nd `  A ) )  /\  E. z
( z  <Q  q  /\  ( *Q `  z
)  e.  ( 1st `  A ) ) ) )
35 eeanv 1951 . . . . . 6  |-  ( E. y E. z ( ( q  <Q  y  /\  ( *Q `  y
)  e.  ( 2nd `  A ) )  /\  ( z  <Q  q  /\  ( *Q `  z
)  e.  ( 1st `  A ) ) )  <-> 
( E. y ( q  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A
) )  /\  E. z ( z  <Q 
q  /\  ( *Q `  z )  e.  ( 1st `  A ) ) ) )
3634, 35bitr4i 187 . . . . 5  |-  ( ( q  e.  ( 1st `  B )  /\  q  e.  ( 2nd `  B
) )  <->  E. y E. z ( ( q 
<Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A
) )  /\  (
z  <Q  q  /\  ( *Q `  z )  e.  ( 1st `  A
) ) ) )
3736notbii 669 . . . 4  |-  ( -.  ( q  e.  ( 1st `  B )  /\  q  e.  ( 2nd `  B ) )  <->  -.  E. y E. z ( ( q 
<Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A
) )  /\  (
z  <Q  q  /\  ( *Q `  z )  e.  ( 1st `  A
) ) ) )
38 alnex 1513 . . . . . 6  |-  ( A. z  -.  ( ( q 
<Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A
) )  /\  (
z  <Q  q  /\  ( *Q `  z )  e.  ( 1st `  A
) ) )  <->  -.  E. z
( ( q  <Q 
y  /\  ( *Q `  y )  e.  ( 2nd `  A ) )  /\  ( z 
<Q  q  /\  ( *Q `  z )  e.  ( 1st `  A
) ) ) )
3938albii 1484 . . . . 5  |-  ( A. y A. z  -.  (
( q  <Q  y  /\  ( *Q `  y
)  e.  ( 2nd `  A ) )  /\  ( z  <Q  q  /\  ( *Q `  z
)  e.  ( 1st `  A ) ) )  <->  A. y  -.  E. z
( ( q  <Q 
y  /\  ( *Q `  y )  e.  ( 2nd `  A ) )  /\  ( z 
<Q  q  /\  ( *Q `  z )  e.  ( 1st `  A
) ) ) )
40 alnex 1513 . . . . 5  |-  ( A. y  -.  E. z ( ( q  <Q  y  /\  ( *Q `  y
)  e.  ( 2nd `  A ) )  /\  ( z  <Q  q  /\  ( *Q `  z
)  e.  ( 1st `  A ) ) )  <->  -.  E. y E. z
( ( q  <Q 
y  /\  ( *Q `  y )  e.  ( 2nd `  A ) )  /\  ( z 
<Q  q  /\  ( *Q `  z )  e.  ( 1st `  A
) ) ) )
4139, 40bitri 184 . . . 4  |-  ( A. y A. z  -.  (
( q  <Q  y  /\  ( *Q `  y
)  e.  ( 2nd `  A ) )  /\  ( z  <Q  q  /\  ( *Q `  z
)  e.  ( 1st `  A ) ) )  <->  -.  E. y E. z
( ( q  <Q 
y  /\  ( *Q `  y )  e.  ( 2nd `  A ) )  /\  ( z 
<Q  q  /\  ( *Q `  z )  e.  ( 1st `  A
) ) ) )
4237, 41bitr4i 187 . . 3  |-  ( -.  ( q  e.  ( 1st `  B )  /\  q  e.  ( 2nd `  B ) )  <->  A. y A. z  -.  ( ( q  <Q 
y  /\  ( *Q `  y )  e.  ( 2nd `  A ) )  /\  ( z 
<Q  q  /\  ( *Q `  z )  e.  ( 1st `  A
) ) ) )
4323, 42sylibr 134 . 2  |-  ( ( A  e.  P.  /\  q  e.  Q. )  ->  -.  ( q  e.  ( 1st `  B
)  /\  q  e.  ( 2nd `  B ) ) )
4443ralrimiva 2570 1  |-  ( A  e.  P.  ->  A. q  e.  Q.  -.  ( q  e.  ( 1st `  B
)  /\  q  e.  ( 2nd `  B ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104   A.wal 1362    = wceq 1364   E.wex 1506    e. wcel 2167   {cab 2182   A.wral 2475   <.cop 3626   class class class wbr 4034   ` cfv 5259   1stc1st 6205   2ndc2nd 6206   Q.cnq 7364   *Qcrq 7368    <Q cltq 7369   P.cnp 7375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-eprel 4325  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-1o 6483  df-oadd 6487  df-omul 6488  df-er 6601  df-ec 6603  df-qs 6607  df-ni 7388  df-mi 7390  df-lti 7391  df-mpq 7429  df-enq 7431  df-nqqs 7432  df-mqqs 7434  df-1nqqs 7435  df-rq 7436  df-ltnqqs 7437  df-inp 7550
This theorem is referenced by:  recexprlempr  7716
  Copyright terms: Public domain W3C validator