ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlemnkeqj Unicode version

Theorem caucvgprprlemnkeqj 7604
Description: Lemma for caucvgprpr 7626. Part of disjointness. (Contributed by Jim Kingdon, 12-Feb-2021.)
Hypotheses
Ref Expression
caucvgprpr.f  |-  ( ph  ->  F : N. --> P. )
caucvgprpr.cau  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <P  ( ( F `
 k )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  /\  ( F `  k
)  <P  ( ( F `
 n )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )
) ) )
caucvgprprlemnkj.k  |-  ( ph  ->  K  e.  N. )
caucvgprprlemnkj.j  |-  ( ph  ->  J  e.  N. )
caucvgprprlemnkj.s  |-  ( ph  ->  S  e.  Q. )
Assertion
Ref Expression
caucvgprprlemnkeqj  |-  ( (
ph  /\  K  =  J )  ->  -.  ( <. { p  |  p  <Q  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  )
)  <Q  q } >.  <P 
( F `  K
)  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >. )
)
Distinct variable groups:    k, F, n    J, p, q    K, p, q    S, p, q
Allowed substitution hints:    ph( u, k, n, q, p, l)    S( u, k, n, l)    F( u, q, p, l)    J( u, k, n, l)    K( u, k, n, l)

Proof of Theorem caucvgprprlemnkeqj
StepHypRef Expression
1 ltsopr 7510 . . . 4  |-  <P  Or  P.
2 ltrelpr 7419 . . . 4  |-  <P  C_  ( P.  X.  P. )
31, 2son2lpi 4981 . . 3  |-  -.  (
( F `  J
)  <P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  /\  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  <P  ( F `  J ) )
4 caucvgprpr.f . . . . . . . . 9  |-  ( ph  ->  F : N. --> P. )
5 caucvgprprlemnkj.j . . . . . . . . 9  |-  ( ph  ->  J  e.  N. )
64, 5ffvelrnd 5602 . . . . . . . 8  |-  ( ph  ->  ( F `  J
)  e.  P. )
76ad2antrr 480 . . . . . . 7  |-  ( ( ( ph  /\  K  =  J )  /\  ( <. { p  |  p 
<Q  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  J )  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  S } ,  {
q  |  S  <Q  q } >. ) )  -> 
( F `  J
)  e.  P. )
85adantr 274 . . . . . . . . . . 11  |-  ( (
ph  /\  K  =  J )  ->  J  e.  N. )
9 nnnq 7336 . . . . . . . . . . 11  |-  ( J  e.  N.  ->  [ <. J ,  1o >. ]  ~Q  e.  Q. )
108, 9syl 14 . . . . . . . . . 10  |-  ( (
ph  /\  K  =  J )  ->  [ <. J ,  1o >. ]  ~Q  e.  Q. )
11 recclnq 7306 . . . . . . . . . 10  |-  ( [
<. J ,  1o >. ]  ~Q  e.  Q.  ->  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  e.  Q. )
1210, 11syl 14 . . . . . . . . 9  |-  ( (
ph  /\  K  =  J )  ->  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  e.  Q. )
13 nqprlu 7461 . . . . . . . . 9  |-  ( ( *Q `  [ <. J ,  1o >. ]  ~Q  )  e.  Q.  ->  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >.  e. 
P. )
1412, 13syl 14 . . . . . . . 8  |-  ( (
ph  /\  K  =  J )  ->  <. { p  |  p  <Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >.  e.  P. )
1514adantr 274 . . . . . . 7  |-  ( ( ( ph  /\  K  =  J )  /\  ( <. { p  |  p 
<Q  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  J )  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  S } ,  {
q  |  S  <Q  q } >. ) )  ->  <. { p  |  p 
<Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >.  e. 
P. )
16 ltaddpr 7511 . . . . . . 7  |-  ( ( ( F `  J
)  e.  P.  /\  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >.  e. 
P. )  ->  ( F `  J )  <P  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )
)
177, 15, 16syl2anc 409 . . . . . 6  |-  ( ( ( ph  /\  K  =  J )  /\  ( <. { p  |  p 
<Q  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  J )  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  S } ,  {
q  |  S  <Q  q } >. ) )  -> 
( F `  J
)  <P  ( ( F `
 J )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. ) )
18 simprr 522 . . . . . 6  |-  ( ( ( ph  /\  K  =  J )  /\  ( <. { p  |  p 
<Q  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  J )  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  S } ,  {
q  |  S  <Q  q } >. ) )  -> 
( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  S } ,  {
q  |  S  <Q  q } >. )
191, 2sotri 4980 . . . . . 6  |-  ( ( ( F `  J
)  <P  ( ( F `
 J )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  /\  ( ( F `
 J )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >. )  ->  ( F `  J
)  <P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >. )
2017, 18, 19syl2anc 409 . . . . 5  |-  ( ( ( ph  /\  K  =  J )  /\  ( <. { p  |  p 
<Q  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  J )  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  S } ,  {
q  |  S  <Q  q } >. ) )  -> 
( F `  J
)  <P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >. )
21 caucvgprprlemnkj.s . . . . . . . . . 10  |-  ( ph  ->  S  e.  Q. )
2221adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  K  =  J )  ->  S  e.  Q. )
23 nqprlu 7461 . . . . . . . . 9  |-  ( S  e.  Q.  ->  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  e.  P. )
2422, 23syl 14 . . . . . . . 8  |-  ( (
ph  /\  K  =  J )  ->  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  e.  P. )
25 ltaddpr 7511 . . . . . . . 8  |-  ( (
<. { p  |  p 
<Q  S } ,  {
q  |  S  <Q  q } >.  e.  P.  /\ 
<. { p  |  p 
<Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >.  e. 
P. )  ->  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  <P  ( <. { p  |  p 
<Q  S } ,  {
q  |  S  <Q  q } >.  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )
)
2624, 14, 25syl2anc 409 . . . . . . 7  |-  ( (
ph  /\  K  =  J )  ->  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  <P  ( <. { p  |  p 
<Q  S } ,  {
q  |  S  <Q  q } >.  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )
)
2726adantr 274 . . . . . 6  |-  ( ( ( ph  /\  K  =  J )  /\  ( <. { p  |  p 
<Q  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  J )  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  S } ,  {
q  |  S  <Q  q } >. ) )  ->  <. { p  |  p 
<Q  S } ,  {
q  |  S  <Q  q } >.  <P  ( <. { p  |  p  <Q  S } ,  {
q  |  S  <Q  q } >.  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )
)
28 simprl 521 . . . . . . 7  |-  ( ( ( ph  /\  K  =  J )  /\  ( <. { p  |  p 
<Q  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  J )  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  S } ,  {
q  |  S  <Q  q } >. ) )  ->  <. { p  |  p 
<Q  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  J )
)
29 addnqpr 7475 . . . . . . . . . 10  |-  ( ( S  e.  Q.  /\  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  e.  Q. )  -> 
<. { p  |  p 
<Q  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  =  (
<. { p  |  p 
<Q  S } ,  {
q  |  S  <Q  q } >.  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )
)
3022, 12, 29syl2anc 409 . . . . . . . . 9  |-  ( (
ph  /\  K  =  J )  ->  <. { p  |  p  <Q  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) )  <Q  q } >.  =  ( <. { p  |  p  <Q  S } ,  {
q  |  S  <Q  q } >.  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )
)
3130breq1d 3975 . . . . . . . 8  |-  ( (
ph  /\  K  =  J )  ->  ( <. { p  |  p 
<Q  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  J )  <->  (
<. { p  |  p 
<Q  S } ,  {
q  |  S  <Q  q } >.  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( F `  J
) ) )
3231adantr 274 . . . . . . 7  |-  ( ( ( ph  /\  K  =  J )  /\  ( <. { p  |  p 
<Q  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  J )  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  S } ,  {
q  |  S  <Q  q } >. ) )  -> 
( <. { p  |  p  <Q  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  )
)  <Q  q } >.  <P 
( F `  J
)  <->  ( <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( F `  J
) ) )
3328, 32mpbid 146 . . . . . 6  |-  ( ( ( ph  /\  K  =  J )  /\  ( <. { p  |  p 
<Q  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  J )  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  S } ,  {
q  |  S  <Q  q } >. ) )  -> 
( <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( F `  J
) )
341, 2sotri 4980 . . . . . 6  |-  ( (
<. { p  |  p 
<Q  S } ,  {
q  |  S  <Q  q } >.  <P  ( <. { p  |  p  <Q  S } ,  {
q  |  S  <Q  q } >.  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )  /\  ( <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( F `  J
) )  ->  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  <P  ( F `  J )
)
3527, 33, 34syl2anc 409 . . . . 5  |-  ( ( ( ph  /\  K  =  J )  /\  ( <. { p  |  p 
<Q  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  J )  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  S } ,  {
q  |  S  <Q  q } >. ) )  ->  <. { p  |  p 
<Q  S } ,  {
q  |  S  <Q  q } >.  <P  ( F `
 J ) )
3620, 35jca 304 . . . 4  |-  ( ( ( ph  /\  K  =  J )  /\  ( <. { p  |  p 
<Q  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  J )  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  S } ,  {
q  |  S  <Q  q } >. ) )  -> 
( ( F `  J )  <P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  /\  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  <P  ( F `  J ) ) )
3736ex 114 . . 3  |-  ( (
ph  /\  K  =  J )  ->  (
( <. { p  |  p  <Q  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  )
)  <Q  q } >.  <P 
( F `  J
)  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >. )  ->  ( ( F `  J )  <P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  /\  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  <P  ( F `  J ) ) ) )
383, 37mtoi 654 . 2  |-  ( (
ph  /\  K  =  J )  ->  -.  ( <. { p  |  p  <Q  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  )
)  <Q  q } >.  <P 
( F `  J
)  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >. )
)
39 opeq1 3741 . . . . . . . . . . 11  |-  ( K  =  J  ->  <. K ,  1o >.  =  <. J ,  1o >. )
4039eceq1d 6513 . . . . . . . . . 10  |-  ( K  =  J  ->  [ <. K ,  1o >. ]  ~Q  =  [ <. J ,  1o >. ]  ~Q  )
4140fveq2d 5471 . . . . . . . . 9  |-  ( K  =  J  ->  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  =  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) )
4241oveq2d 5837 . . . . . . . 8  |-  ( K  =  J  ->  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) )  =  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) )
4342breq2d 3977 . . . . . . 7  |-  ( K  =  J  ->  (
p  <Q  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) )  <->  p  <Q  ( S  +Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  )
) ) )
4443abbidv 2275 . . . . . 6  |-  ( K  =  J  ->  { p  |  p  <Q  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) ) }  =  { p  |  p  <Q  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) } )
4542breq1d 3975 . . . . . . 7  |-  ( K  =  J  ->  (
( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  )
)  <Q  q  <->  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) )  <Q 
q ) )
4645abbidv 2275 . . . . . 6  |-  ( K  =  J  ->  { q  |  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) )  <Q  q }  =  { q  |  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) )  <Q  q } )
4744, 46opeq12d 3749 . . . . 5  |-  ( K  =  J  ->  <. { p  |  p  <Q  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) )  <Q  q } >.  =  <. { p  |  p  <Q  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) )  <Q  q } >. )
48 fveq2 5467 . . . . 5  |-  ( K  =  J  ->  ( F `  K )  =  ( F `  J ) )
4947, 48breq12d 3978 . . . 4  |-  ( K  =  J  ->  ( <. { p  |  p 
<Q  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  K )  <->  <. { p  |  p  <Q  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  J )
) )
5049anbi1d 461 . . 3  |-  ( K  =  J  ->  (
( <. { p  |  p  <Q  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  )
)  <Q  q } >.  <P 
( F `  K
)  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >. )  <->  (
<. { p  |  p 
<Q  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  J )  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  S } ,  {
q  |  S  <Q  q } >. ) ) )
5150adantl 275 . 2  |-  ( (
ph  /\  K  =  J )  ->  (
( <. { p  |  p  <Q  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  )
)  <Q  q } >.  <P 
( F `  K
)  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >. )  <->  (
<. { p  |  p 
<Q  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  J )  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  S } ,  {
q  |  S  <Q  q } >. ) ) )
5238, 51mtbird 663 1  |-  ( (
ph  /\  K  =  J )  ->  -.  ( <. { p  |  p  <Q  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  )
)  <Q  q } >.  <P 
( F `  K
)  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >. )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1335    e. wcel 2128   {cab 2143   A.wral 2435   <.cop 3563   class class class wbr 3965   -->wf 5165   ` cfv 5169  (class class class)co 5821   1oc1o 6353   [cec 6475   N.cnpi 7186    <N clti 7189    ~Q ceq 7193   Q.cnq 7194    +Q cplq 7196   *Qcrq 7198    <Q cltq 7199   P.cnp 7205    +P. cpp 7207    <P cltp 7209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4495  ax-iinf 4546
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-eprel 4249  df-id 4253  df-po 4256  df-iso 4257  df-iord 4326  df-on 4328  df-suc 4331  df-iom 4549  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-rn 4596  df-res 4597  df-ima 4598  df-iota 5134  df-fun 5171  df-fn 5172  df-f 5173  df-f1 5174  df-fo 5175  df-f1o 5176  df-fv 5177  df-ov 5824  df-oprab 5825  df-mpo 5826  df-1st 6085  df-2nd 6086  df-recs 6249  df-irdg 6314  df-1o 6360  df-2o 6361  df-oadd 6364  df-omul 6365  df-er 6477  df-ec 6479  df-qs 6483  df-ni 7218  df-pli 7219  df-mi 7220  df-lti 7221  df-plpq 7258  df-mpq 7259  df-enq 7261  df-nqqs 7262  df-plqqs 7263  df-mqqs 7264  df-1nqqs 7265  df-rq 7266  df-ltnqqs 7267  df-enq0 7338  df-nq0 7339  df-0nq0 7340  df-plq0 7341  df-mq0 7342  df-inp 7380  df-iplp 7382  df-iltp 7384
This theorem is referenced by:  caucvgprprlemnkj  7606
  Copyright terms: Public domain W3C validator