| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caucvgprprlemnkeqj | Unicode version | ||
| Description: Lemma for caucvgprpr 7824. Part of disjointness. (Contributed by Jim Kingdon, 12-Feb-2021.) |
| Ref | Expression |
|---|---|
| caucvgprpr.f |
|
| caucvgprpr.cau |
|
| caucvgprprlemnkj.k |
|
| caucvgprprlemnkj.j |
|
| caucvgprprlemnkj.s |
|
| Ref | Expression |
|---|---|
| caucvgprprlemnkeqj |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltsopr 7708 |
. . . 4
| |
| 2 | ltrelpr 7617 |
. . . 4
| |
| 3 | 1, 2 | son2lpi 5078 |
. . 3
|
| 4 | caucvgprpr.f |
. . . . . . . . 9
| |
| 5 | caucvgprprlemnkj.j |
. . . . . . . . 9
| |
| 6 | 4, 5 | ffvelcdmd 5715 |
. . . . . . . 8
|
| 7 | 6 | ad2antrr 488 |
. . . . . . 7
|
| 8 | 5 | adantr 276 |
. . . . . . . . . . 11
|
| 9 | nnnq 7534 |
. . . . . . . . . . 11
| |
| 10 | 8, 9 | syl 14 |
. . . . . . . . . 10
|
| 11 | recclnq 7504 |
. . . . . . . . . 10
| |
| 12 | 10, 11 | syl 14 |
. . . . . . . . 9
|
| 13 | nqprlu 7659 |
. . . . . . . . 9
| |
| 14 | 12, 13 | syl 14 |
. . . . . . . 8
|
| 15 | 14 | adantr 276 |
. . . . . . 7
|
| 16 | ltaddpr 7709 |
. . . . . . 7
| |
| 17 | 7, 15, 16 | syl2anc 411 |
. . . . . 6
|
| 18 | simprr 531 |
. . . . . 6
| |
| 19 | 1, 2 | sotri 5077 |
. . . . . 6
|
| 20 | 17, 18, 19 | syl2anc 411 |
. . . . 5
|
| 21 | caucvgprprlemnkj.s |
. . . . . . . . . 10
| |
| 22 | 21 | adantr 276 |
. . . . . . . . 9
|
| 23 | nqprlu 7659 |
. . . . . . . . 9
| |
| 24 | 22, 23 | syl 14 |
. . . . . . . 8
|
| 25 | ltaddpr 7709 |
. . . . . . . 8
| |
| 26 | 24, 14, 25 | syl2anc 411 |
. . . . . . 7
|
| 27 | 26 | adantr 276 |
. . . . . 6
|
| 28 | simprl 529 |
. . . . . . 7
| |
| 29 | addnqpr 7673 |
. . . . . . . . . 10
| |
| 30 | 22, 12, 29 | syl2anc 411 |
. . . . . . . . 9
|
| 31 | 30 | breq1d 4053 |
. . . . . . . 8
|
| 32 | 31 | adantr 276 |
. . . . . . 7
|
| 33 | 28, 32 | mpbid 147 |
. . . . . 6
|
| 34 | 1, 2 | sotri 5077 |
. . . . . 6
|
| 35 | 27, 33, 34 | syl2anc 411 |
. . . . 5
|
| 36 | 20, 35 | jca 306 |
. . . 4
|
| 37 | 36 | ex 115 |
. . 3
|
| 38 | 3, 37 | mtoi 665 |
. 2
|
| 39 | opeq1 3818 |
. . . . . . . . . . 11
| |
| 40 | 39 | eceq1d 6655 |
. . . . . . . . . 10
|
| 41 | 40 | fveq2d 5579 |
. . . . . . . . 9
|
| 42 | 41 | oveq2d 5959 |
. . . . . . . 8
|
| 43 | 42 | breq2d 4055 |
. . . . . . 7
|
| 44 | 43 | abbidv 2322 |
. . . . . 6
|
| 45 | 42 | breq1d 4053 |
. . . . . . 7
|
| 46 | 45 | abbidv 2322 |
. . . . . 6
|
| 47 | 44, 46 | opeq12d 3826 |
. . . . 5
|
| 48 | fveq2 5575 |
. . . . 5
| |
| 49 | 47, 48 | breq12d 4056 |
. . . 4
|
| 50 | 49 | anbi1d 465 |
. . 3
|
| 51 | 50 | adantl 277 |
. 2
|
| 52 | 38, 51 | mtbird 674 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-eprel 4335 df-id 4339 df-po 4342 df-iso 4343 df-iord 4412 df-on 4414 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-recs 6390 df-irdg 6455 df-1o 6501 df-2o 6502 df-oadd 6505 df-omul 6506 df-er 6619 df-ec 6621 df-qs 6625 df-ni 7416 df-pli 7417 df-mi 7418 df-lti 7419 df-plpq 7456 df-mpq 7457 df-enq 7459 df-nqqs 7460 df-plqqs 7461 df-mqqs 7462 df-1nqqs 7463 df-rq 7464 df-ltnqqs 7465 df-enq0 7536 df-nq0 7537 df-0nq0 7538 df-plq0 7539 df-mq0 7540 df-inp 7578 df-iplp 7580 df-iltp 7582 |
| This theorem is referenced by: caucvgprprlemnkj 7804 |
| Copyright terms: Public domain | W3C validator |