Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > caucvgprprlemnkeqj | Unicode version |
Description: Lemma for caucvgprpr 7626. Part of disjointness. (Contributed by Jim Kingdon, 12-Feb-2021.) |
Ref | Expression |
---|---|
caucvgprpr.f | |
caucvgprpr.cau | |
caucvgprprlemnkj.k | |
caucvgprprlemnkj.j | |
caucvgprprlemnkj.s |
Ref | Expression |
---|---|
caucvgprprlemnkeqj |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltsopr 7510 | . . . 4 | |
2 | ltrelpr 7419 | . . . 4 | |
3 | 1, 2 | son2lpi 4981 | . . 3 |
4 | caucvgprpr.f | . . . . . . . . 9 | |
5 | caucvgprprlemnkj.j | . . . . . . . . 9 | |
6 | 4, 5 | ffvelrnd 5602 | . . . . . . . 8 |
7 | 6 | ad2antrr 480 | . . . . . . 7 |
8 | 5 | adantr 274 | . . . . . . . . . . 11 |
9 | nnnq 7336 | . . . . . . . . . . 11 | |
10 | 8, 9 | syl 14 | . . . . . . . . . 10 |
11 | recclnq 7306 | . . . . . . . . . 10 | |
12 | 10, 11 | syl 14 | . . . . . . . . 9 |
13 | nqprlu 7461 | . . . . . . . . 9 | |
14 | 12, 13 | syl 14 | . . . . . . . 8 |
15 | 14 | adantr 274 | . . . . . . 7 |
16 | ltaddpr 7511 | . . . . . . 7 | |
17 | 7, 15, 16 | syl2anc 409 | . . . . . 6 |
18 | simprr 522 | . . . . . 6 | |
19 | 1, 2 | sotri 4980 | . . . . . 6 |
20 | 17, 18, 19 | syl2anc 409 | . . . . 5 |
21 | caucvgprprlemnkj.s | . . . . . . . . . 10 | |
22 | 21 | adantr 274 | . . . . . . . . 9 |
23 | nqprlu 7461 | . . . . . . . . 9 | |
24 | 22, 23 | syl 14 | . . . . . . . 8 |
25 | ltaddpr 7511 | . . . . . . . 8 | |
26 | 24, 14, 25 | syl2anc 409 | . . . . . . 7 |
27 | 26 | adantr 274 | . . . . . 6 |
28 | simprl 521 | . . . . . . 7 | |
29 | addnqpr 7475 | . . . . . . . . . 10 | |
30 | 22, 12, 29 | syl2anc 409 | . . . . . . . . 9 |
31 | 30 | breq1d 3975 | . . . . . . . 8 |
32 | 31 | adantr 274 | . . . . . . 7 |
33 | 28, 32 | mpbid 146 | . . . . . 6 |
34 | 1, 2 | sotri 4980 | . . . . . 6 |
35 | 27, 33, 34 | syl2anc 409 | . . . . 5 |
36 | 20, 35 | jca 304 | . . . 4 |
37 | 36 | ex 114 | . . 3 |
38 | 3, 37 | mtoi 654 | . 2 |
39 | opeq1 3741 | . . . . . . . . . . 11 | |
40 | 39 | eceq1d 6513 | . . . . . . . . . 10 |
41 | 40 | fveq2d 5471 | . . . . . . . . 9 |
42 | 41 | oveq2d 5837 | . . . . . . . 8 |
43 | 42 | breq2d 3977 | . . . . . . 7 |
44 | 43 | abbidv 2275 | . . . . . 6 |
45 | 42 | breq1d 3975 | . . . . . . 7 |
46 | 45 | abbidv 2275 | . . . . . 6 |
47 | 44, 46 | opeq12d 3749 | . . . . 5 |
48 | fveq2 5467 | . . . . 5 | |
49 | 47, 48 | breq12d 3978 | . . . 4 |
50 | 49 | anbi1d 461 | . . 3 |
51 | 50 | adantl 275 | . 2 |
52 | 38, 51 | mtbird 663 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wceq 1335 wcel 2128 cab 2143 wral 2435 cop 3563 class class class wbr 3965 wf 5165 cfv 5169 (class class class)co 5821 c1o 6353 cec 6475 cnpi 7186 clti 7189 ceq 7193 cnq 7194 cplq 7196 crq 7198 cltq 7199 cnp 7205 cpp 7207 cltp 7209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-nul 4090 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4495 ax-iinf 4546 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-tr 4063 df-eprel 4249 df-id 4253 df-po 4256 df-iso 4257 df-iord 4326 df-on 4328 df-suc 4331 df-iom 4549 df-xp 4591 df-rel 4592 df-cnv 4593 df-co 4594 df-dm 4595 df-rn 4596 df-res 4597 df-ima 4598 df-iota 5134 df-fun 5171 df-fn 5172 df-f 5173 df-f1 5174 df-fo 5175 df-f1o 5176 df-fv 5177 df-ov 5824 df-oprab 5825 df-mpo 5826 df-1st 6085 df-2nd 6086 df-recs 6249 df-irdg 6314 df-1o 6360 df-2o 6361 df-oadd 6364 df-omul 6365 df-er 6477 df-ec 6479 df-qs 6483 df-ni 7218 df-pli 7219 df-mi 7220 df-lti 7221 df-plpq 7258 df-mpq 7259 df-enq 7261 df-nqqs 7262 df-plqqs 7263 df-mqqs 7264 df-1nqqs 7265 df-rq 7266 df-ltnqqs 7267 df-enq0 7338 df-nq0 7339 df-0nq0 7340 df-plq0 7341 df-mq0 7342 df-inp 7380 df-iplp 7382 df-iltp 7384 |
This theorem is referenced by: caucvgprprlemnkj 7606 |
Copyright terms: Public domain | W3C validator |