ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlemnkeqj Unicode version

Theorem caucvgprprlemnkeqj 7873
Description: Lemma for caucvgprpr 7895. Part of disjointness. (Contributed by Jim Kingdon, 12-Feb-2021.)
Hypotheses
Ref Expression
caucvgprpr.f  |-  ( ph  ->  F : N. --> P. )
caucvgprpr.cau  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <P  ( ( F `
 k )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  /\  ( F `  k
)  <P  ( ( F `
 n )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )
) ) )
caucvgprprlemnkj.k  |-  ( ph  ->  K  e.  N. )
caucvgprprlemnkj.j  |-  ( ph  ->  J  e.  N. )
caucvgprprlemnkj.s  |-  ( ph  ->  S  e.  Q. )
Assertion
Ref Expression
caucvgprprlemnkeqj  |-  ( (
ph  /\  K  =  J )  ->  -.  ( <. { p  |  p  <Q  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  )
)  <Q  q } >.  <P 
( F `  K
)  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >. )
)
Distinct variable groups:    k, F, n    J, p, q    K, p, q    S, p, q
Allowed substitution hints:    ph( u, k, n, q, p, l)    S( u, k, n, l)    F( u, q, p, l)    J( u, k, n, l)    K( u, k, n, l)

Proof of Theorem caucvgprprlemnkeqj
StepHypRef Expression
1 ltsopr 7779 . . . 4  |-  <P  Or  P.
2 ltrelpr 7688 . . . 4  |-  <P  C_  ( P.  X.  P. )
31, 2son2lpi 5124 . . 3  |-  -.  (
( F `  J
)  <P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  /\  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  <P  ( F `  J ) )
4 caucvgprpr.f . . . . . . . . 9  |-  ( ph  ->  F : N. --> P. )
5 caucvgprprlemnkj.j . . . . . . . . 9  |-  ( ph  ->  J  e.  N. )
64, 5ffvelcdmd 5770 . . . . . . . 8  |-  ( ph  ->  ( F `  J
)  e.  P. )
76ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  K  =  J )  /\  ( <. { p  |  p 
<Q  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  J )  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  S } ,  {
q  |  S  <Q  q } >. ) )  -> 
( F `  J
)  e.  P. )
85adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  K  =  J )  ->  J  e.  N. )
9 nnnq 7605 . . . . . . . . . . 11  |-  ( J  e.  N.  ->  [ <. J ,  1o >. ]  ~Q  e.  Q. )
108, 9syl 14 . . . . . . . . . 10  |-  ( (
ph  /\  K  =  J )  ->  [ <. J ,  1o >. ]  ~Q  e.  Q. )
11 recclnq 7575 . . . . . . . . . 10  |-  ( [
<. J ,  1o >. ]  ~Q  e.  Q.  ->  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  e.  Q. )
1210, 11syl 14 . . . . . . . . 9  |-  ( (
ph  /\  K  =  J )  ->  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  e.  Q. )
13 nqprlu 7730 . . . . . . . . 9  |-  ( ( *Q `  [ <. J ,  1o >. ]  ~Q  )  e.  Q.  ->  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >.  e. 
P. )
1412, 13syl 14 . . . . . . . 8  |-  ( (
ph  /\  K  =  J )  ->  <. { p  |  p  <Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >.  e.  P. )
1514adantr 276 . . . . . . 7  |-  ( ( ( ph  /\  K  =  J )  /\  ( <. { p  |  p 
<Q  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  J )  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  S } ,  {
q  |  S  <Q  q } >. ) )  ->  <. { p  |  p 
<Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >.  e. 
P. )
16 ltaddpr 7780 . . . . . . 7  |-  ( ( ( F `  J
)  e.  P.  /\  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >.  e. 
P. )  ->  ( F `  J )  <P  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )
)
177, 15, 16syl2anc 411 . . . . . 6  |-  ( ( ( ph  /\  K  =  J )  /\  ( <. { p  |  p 
<Q  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  J )  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  S } ,  {
q  |  S  <Q  q } >. ) )  -> 
( F `  J
)  <P  ( ( F `
 J )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. ) )
18 simprr 531 . . . . . 6  |-  ( ( ( ph  /\  K  =  J )  /\  ( <. { p  |  p 
<Q  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  J )  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  S } ,  {
q  |  S  <Q  q } >. ) )  -> 
( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  S } ,  {
q  |  S  <Q  q } >. )
191, 2sotri 5123 . . . . . 6  |-  ( ( ( F `  J
)  <P  ( ( F `
 J )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  /\  ( ( F `
 J )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >. )  ->  ( F `  J
)  <P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >. )
2017, 18, 19syl2anc 411 . . . . 5  |-  ( ( ( ph  /\  K  =  J )  /\  ( <. { p  |  p 
<Q  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  J )  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  S } ,  {
q  |  S  <Q  q } >. ) )  -> 
( F `  J
)  <P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >. )
21 caucvgprprlemnkj.s . . . . . . . . . 10  |-  ( ph  ->  S  e.  Q. )
2221adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  K  =  J )  ->  S  e.  Q. )
23 nqprlu 7730 . . . . . . . . 9  |-  ( S  e.  Q.  ->  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  e.  P. )
2422, 23syl 14 . . . . . . . 8  |-  ( (
ph  /\  K  =  J )  ->  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  e.  P. )
25 ltaddpr 7780 . . . . . . . 8  |-  ( (
<. { p  |  p 
<Q  S } ,  {
q  |  S  <Q  q } >.  e.  P.  /\ 
<. { p  |  p 
<Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >.  e. 
P. )  ->  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  <P  ( <. { p  |  p 
<Q  S } ,  {
q  |  S  <Q  q } >.  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )
)
2624, 14, 25syl2anc 411 . . . . . . 7  |-  ( (
ph  /\  K  =  J )  ->  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  <P  ( <. { p  |  p 
<Q  S } ,  {
q  |  S  <Q  q } >.  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )
)
2726adantr 276 . . . . . 6  |-  ( ( ( ph  /\  K  =  J )  /\  ( <. { p  |  p 
<Q  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  J )  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  S } ,  {
q  |  S  <Q  q } >. ) )  ->  <. { p  |  p 
<Q  S } ,  {
q  |  S  <Q  q } >.  <P  ( <. { p  |  p  <Q  S } ,  {
q  |  S  <Q  q } >.  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )
)
28 simprl 529 . . . . . . 7  |-  ( ( ( ph  /\  K  =  J )  /\  ( <. { p  |  p 
<Q  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  J )  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  S } ,  {
q  |  S  <Q  q } >. ) )  ->  <. { p  |  p 
<Q  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  J )
)
29 addnqpr 7744 . . . . . . . . . 10  |-  ( ( S  e.  Q.  /\  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  e.  Q. )  -> 
<. { p  |  p 
<Q  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  =  (
<. { p  |  p 
<Q  S } ,  {
q  |  S  <Q  q } >.  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )
)
3022, 12, 29syl2anc 411 . . . . . . . . 9  |-  ( (
ph  /\  K  =  J )  ->  <. { p  |  p  <Q  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) )  <Q  q } >.  =  ( <. { p  |  p  <Q  S } ,  {
q  |  S  <Q  q } >.  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )
)
3130breq1d 4092 . . . . . . . 8  |-  ( (
ph  /\  K  =  J )  ->  ( <. { p  |  p 
<Q  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  J )  <->  (
<. { p  |  p 
<Q  S } ,  {
q  |  S  <Q  q } >.  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( F `  J
) ) )
3231adantr 276 . . . . . . 7  |-  ( ( ( ph  /\  K  =  J )  /\  ( <. { p  |  p 
<Q  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  J )  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  S } ,  {
q  |  S  <Q  q } >. ) )  -> 
( <. { p  |  p  <Q  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  )
)  <Q  q } >.  <P 
( F `  J
)  <->  ( <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( F `  J
) ) )
3328, 32mpbid 147 . . . . . 6  |-  ( ( ( ph  /\  K  =  J )  /\  ( <. { p  |  p 
<Q  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  J )  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  S } ,  {
q  |  S  <Q  q } >. ) )  -> 
( <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( F `  J
) )
341, 2sotri 5123 . . . . . 6  |-  ( (
<. { p  |  p 
<Q  S } ,  {
q  |  S  <Q  q } >.  <P  ( <. { p  |  p  <Q  S } ,  {
q  |  S  <Q  q } >.  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )  /\  ( <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( F `  J
) )  ->  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  <P  ( F `  J )
)
3527, 33, 34syl2anc 411 . . . . 5  |-  ( ( ( ph  /\  K  =  J )  /\  ( <. { p  |  p 
<Q  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  J )  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  S } ,  {
q  |  S  <Q  q } >. ) )  ->  <. { p  |  p 
<Q  S } ,  {
q  |  S  <Q  q } >.  <P  ( F `
 J ) )
3620, 35jca 306 . . . 4  |-  ( ( ( ph  /\  K  =  J )  /\  ( <. { p  |  p 
<Q  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  J )  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  S } ,  {
q  |  S  <Q  q } >. ) )  -> 
( ( F `  J )  <P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  /\  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  <P  ( F `  J ) ) )
3736ex 115 . . 3  |-  ( (
ph  /\  K  =  J )  ->  (
( <. { p  |  p  <Q  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  )
)  <Q  q } >.  <P 
( F `  J
)  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >. )  ->  ( ( F `  J )  <P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  /\  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  <P  ( F `  J ) ) ) )
383, 37mtoi 668 . 2  |-  ( (
ph  /\  K  =  J )  ->  -.  ( <. { p  |  p  <Q  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  )
)  <Q  q } >.  <P 
( F `  J
)  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >. )
)
39 opeq1 3856 . . . . . . . . . . 11  |-  ( K  =  J  ->  <. K ,  1o >.  =  <. J ,  1o >. )
4039eceq1d 6714 . . . . . . . . . 10  |-  ( K  =  J  ->  [ <. K ,  1o >. ]  ~Q  =  [ <. J ,  1o >. ]  ~Q  )
4140fveq2d 5630 . . . . . . . . 9  |-  ( K  =  J  ->  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  =  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) )
4241oveq2d 6016 . . . . . . . 8  |-  ( K  =  J  ->  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) )  =  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) )
4342breq2d 4094 . . . . . . 7  |-  ( K  =  J  ->  (
p  <Q  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) )  <->  p  <Q  ( S  +Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  )
) ) )
4443abbidv 2347 . . . . . 6  |-  ( K  =  J  ->  { p  |  p  <Q  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) ) }  =  { p  |  p  <Q  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) } )
4542breq1d 4092 . . . . . . 7  |-  ( K  =  J  ->  (
( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  )
)  <Q  q  <->  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) )  <Q 
q ) )
4645abbidv 2347 . . . . . 6  |-  ( K  =  J  ->  { q  |  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) )  <Q  q }  =  { q  |  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) )  <Q  q } )
4744, 46opeq12d 3864 . . . . 5  |-  ( K  =  J  ->  <. { p  |  p  <Q  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) )  <Q  q } >.  =  <. { p  |  p  <Q  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) )  <Q  q } >. )
48 fveq2 5626 . . . . 5  |-  ( K  =  J  ->  ( F `  K )  =  ( F `  J ) )
4947, 48breq12d 4095 . . . 4  |-  ( K  =  J  ->  ( <. { p  |  p 
<Q  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  K )  <->  <. { p  |  p  <Q  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  J )
) )
5049anbi1d 465 . . 3  |-  ( K  =  J  ->  (
( <. { p  |  p  <Q  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  )
)  <Q  q } >.  <P 
( F `  K
)  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >. )  <->  (
<. { p  |  p 
<Q  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  J )  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  S } ,  {
q  |  S  <Q  q } >. ) ) )
5150adantl 277 . 2  |-  ( (
ph  /\  K  =  J )  ->  (
( <. { p  |  p  <Q  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  )
)  <Q  q } >.  <P 
( F `  K
)  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >. )  <->  (
<. { p  |  p 
<Q  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  J )  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  S } ,  {
q  |  S  <Q  q } >. ) ) )
5238, 51mtbird 677 1  |-  ( (
ph  /\  K  =  J )  ->  -.  ( <. { p  |  p  <Q  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  )
)  <Q  q } >.  <P 
( F `  K
)  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >. )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   {cab 2215   A.wral 2508   <.cop 3669   class class class wbr 4082   -->wf 5313   ` cfv 5317  (class class class)co 6000   1oc1o 6553   [cec 6676   N.cnpi 7455    <N clti 7458    ~Q ceq 7462   Q.cnq 7463    +Q cplq 7465   *Qcrq 7467    <Q cltq 7468   P.cnp 7474    +P. cpp 7476    <P cltp 7478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-eprel 4379  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-irdg 6514  df-1o 6560  df-2o 6561  df-oadd 6564  df-omul 6565  df-er 6678  df-ec 6680  df-qs 6684  df-ni 7487  df-pli 7488  df-mi 7489  df-lti 7490  df-plpq 7527  df-mpq 7528  df-enq 7530  df-nqqs 7531  df-plqqs 7532  df-mqqs 7533  df-1nqqs 7534  df-rq 7535  df-ltnqqs 7536  df-enq0 7607  df-nq0 7608  df-0nq0 7609  df-plq0 7610  df-mq0 7611  df-inp 7649  df-iplp 7651  df-iltp 7653
This theorem is referenced by:  caucvgprprlemnkj  7875
  Copyright terms: Public domain W3C validator