ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sotri Unicode version

Theorem sotri 5065
Description: A strict order relation is a transitive relation. (Contributed by NM, 10-Feb-1996.) (Revised by Mario Carneiro, 10-May-2013.)
Hypotheses
Ref Expression
soi.1  |-  R  Or  S
soi.2  |-  R  C_  ( S  X.  S
)
Assertion
Ref Expression
sotri  |-  ( ( A R B  /\  B R C )  ->  A R C )

Proof of Theorem sotri
StepHypRef Expression
1 soi.2 . . . . 5  |-  R  C_  ( S  X.  S
)
21brel 4715 . . . 4  |-  ( A R B  ->  ( A  e.  S  /\  B  e.  S )
)
32simpld 112 . . 3  |-  ( A R B  ->  A  e.  S )
41brel 4715 . . 3  |-  ( B R C  ->  ( B  e.  S  /\  C  e.  S )
)
53, 4anim12i 338 . 2  |-  ( ( A R B  /\  B R C )  -> 
( A  e.  S  /\  ( B  e.  S  /\  C  e.  S
) ) )
6 soi.1 . . . 4  |-  R  Or  S
7 sotr 4353 . . . 4  |-  ( ( R  Or  S  /\  ( A  e.  S  /\  B  e.  S  /\  C  e.  S
) )  ->  (
( A R B  /\  B R C )  ->  A R C ) )
86, 7mpan 424 . . 3  |-  ( ( A  e.  S  /\  B  e.  S  /\  C  e.  S )  ->  ( ( A R B  /\  B R C )  ->  A R C ) )
983expb 1206 . 2  |-  ( ( A  e.  S  /\  ( B  e.  S  /\  C  e.  S
) )  ->  (
( A R B  /\  B R C )  ->  A R C ) )
105, 9mpcom 36 1  |-  ( ( A R B  /\  B R C )  ->  A R C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    e. wcel 2167    C_ wss 3157   class class class wbr 4033    Or wor 4330    X. cxp 4661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-po 4331  df-iso 4332  df-xp 4669
This theorem is referenced by:  son2lpi  5066  ltsonq  7465  lt2addnq  7471  lt2mulnq  7472  ltbtwnnqq  7482  prarloclemarch2  7486  genplt2i  7577  addlocprlemgt  7601  nqprloc  7612  prmuloclemcalc  7632  ltsopr  7663  ltexprlemopl  7668  ltexprlemopu  7670  ltexprlemru  7679  prplnqu  7687  recexprlemlol  7693  recexprlemupu  7695  recexprlemdisj  7697  recexprlemss1l  7702  recexprlemss1u  7703  cauappcvgprlemopl  7713  cauappcvgprlemlol  7714  cauappcvgprlemupu  7716  cauappcvgprlemladdfu  7721  caucvgprlemk  7732  caucvgprlemnkj  7733  caucvgprlemnbj  7734  caucvgprlemm  7735  caucvgprlemopl  7736  caucvgprlemlol  7737  caucvgprlemupu  7739  caucvgprlemloc  7742  caucvgprlemladdfu  7744  caucvgprprlemk  7750  caucvgprprlemloccalc  7751  caucvgprprlemnkltj  7756  caucvgprprlemnkeqj  7757  caucvgprprlemnjltk  7758  caucvgprprlemnbj  7760  caucvgprprlemml  7761  caucvgprprlemopl  7764  caucvgprprlemlol  7765  caucvgprprlemupu  7767  lttrsr  7829  addgt0sr  7842  archsr  7849  caucvgsrlemcl  7856  caucvgsrlemfv  7858  suplocsrlemb  7873  suplocsrlempr  7874  suplocsrlem  7875  axpre-lttrn  7951
  Copyright terms: Public domain W3C validator