ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sotri Unicode version

Theorem sotri 5079
Description: A strict order relation is a transitive relation. (Contributed by NM, 10-Feb-1996.) (Revised by Mario Carneiro, 10-May-2013.)
Hypotheses
Ref Expression
soi.1  |-  R  Or  S
soi.2  |-  R  C_  ( S  X.  S
)
Assertion
Ref Expression
sotri  |-  ( ( A R B  /\  B R C )  ->  A R C )

Proof of Theorem sotri
StepHypRef Expression
1 soi.2 . . . . 5  |-  R  C_  ( S  X.  S
)
21brel 4728 . . . 4  |-  ( A R B  ->  ( A  e.  S  /\  B  e.  S )
)
32simpld 112 . . 3  |-  ( A R B  ->  A  e.  S )
41brel 4728 . . 3  |-  ( B R C  ->  ( B  e.  S  /\  C  e.  S )
)
53, 4anim12i 338 . 2  |-  ( ( A R B  /\  B R C )  -> 
( A  e.  S  /\  ( B  e.  S  /\  C  e.  S
) ) )
6 soi.1 . . . 4  |-  R  Or  S
7 sotr 4366 . . . 4  |-  ( ( R  Or  S  /\  ( A  e.  S  /\  B  e.  S  /\  C  e.  S
) )  ->  (
( A R B  /\  B R C )  ->  A R C ) )
86, 7mpan 424 . . 3  |-  ( ( A  e.  S  /\  B  e.  S  /\  C  e.  S )  ->  ( ( A R B  /\  B R C )  ->  A R C ) )
983expb 1207 . 2  |-  ( ( A  e.  S  /\  ( B  e.  S  /\  C  e.  S
) )  ->  (
( A R B  /\  B R C )  ->  A R C ) )
105, 9mpcom 36 1  |-  ( ( A R B  /\  B R C )  ->  A R C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    e. wcel 2176    C_ wss 3166   class class class wbr 4045    Or wor 4343    X. cxp 4674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4046  df-opab 4107  df-po 4344  df-iso 4345  df-xp 4682
This theorem is referenced by:  son2lpi  5080  ltsonq  7513  lt2addnq  7519  lt2mulnq  7520  ltbtwnnqq  7530  prarloclemarch2  7534  genplt2i  7625  addlocprlemgt  7649  nqprloc  7660  prmuloclemcalc  7680  ltsopr  7711  ltexprlemopl  7716  ltexprlemopu  7718  ltexprlemru  7727  prplnqu  7735  recexprlemlol  7741  recexprlemupu  7743  recexprlemdisj  7745  recexprlemss1l  7750  recexprlemss1u  7751  cauappcvgprlemopl  7761  cauappcvgprlemlol  7762  cauappcvgprlemupu  7764  cauappcvgprlemladdfu  7769  caucvgprlemk  7780  caucvgprlemnkj  7781  caucvgprlemnbj  7782  caucvgprlemm  7783  caucvgprlemopl  7784  caucvgprlemlol  7785  caucvgprlemupu  7787  caucvgprlemloc  7790  caucvgprlemladdfu  7792  caucvgprprlemk  7798  caucvgprprlemloccalc  7799  caucvgprprlemnkltj  7804  caucvgprprlemnkeqj  7805  caucvgprprlemnjltk  7806  caucvgprprlemnbj  7808  caucvgprprlemml  7809  caucvgprprlemopl  7812  caucvgprprlemlol  7813  caucvgprprlemupu  7815  lttrsr  7877  addgt0sr  7890  archsr  7897  caucvgsrlemcl  7904  caucvgsrlemfv  7906  suplocsrlemb  7921  suplocsrlempr  7922  suplocsrlem  7923  axpre-lttrn  7999
  Copyright terms: Public domain W3C validator