ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sotri Unicode version

Theorem sotri 5061
Description: A strict order relation is a transitive relation. (Contributed by NM, 10-Feb-1996.) (Revised by Mario Carneiro, 10-May-2013.)
Hypotheses
Ref Expression
soi.1  |-  R  Or  S
soi.2  |-  R  C_  ( S  X.  S
)
Assertion
Ref Expression
sotri  |-  ( ( A R B  /\  B R C )  ->  A R C )

Proof of Theorem sotri
StepHypRef Expression
1 soi.2 . . . . 5  |-  R  C_  ( S  X.  S
)
21brel 4711 . . . 4  |-  ( A R B  ->  ( A  e.  S  /\  B  e.  S )
)
32simpld 112 . . 3  |-  ( A R B  ->  A  e.  S )
41brel 4711 . . 3  |-  ( B R C  ->  ( B  e.  S  /\  C  e.  S )
)
53, 4anim12i 338 . 2  |-  ( ( A R B  /\  B R C )  -> 
( A  e.  S  /\  ( B  e.  S  /\  C  e.  S
) ) )
6 soi.1 . . . 4  |-  R  Or  S
7 sotr 4349 . . . 4  |-  ( ( R  Or  S  /\  ( A  e.  S  /\  B  e.  S  /\  C  e.  S
) )  ->  (
( A R B  /\  B R C )  ->  A R C ) )
86, 7mpan 424 . . 3  |-  ( ( A  e.  S  /\  B  e.  S  /\  C  e.  S )  ->  ( ( A R B  /\  B R C )  ->  A R C ) )
983expb 1206 . 2  |-  ( ( A  e.  S  /\  ( B  e.  S  /\  C  e.  S
) )  ->  (
( A R B  /\  B R C )  ->  A R C ) )
105, 9mpcom 36 1  |-  ( ( A R B  /\  B R C )  ->  A R C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    e. wcel 2164    C_ wss 3153   class class class wbr 4029    Or wor 4326    X. cxp 4657
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-po 4327  df-iso 4328  df-xp 4665
This theorem is referenced by:  son2lpi  5062  ltsonq  7458  lt2addnq  7464  lt2mulnq  7465  ltbtwnnqq  7475  prarloclemarch2  7479  genplt2i  7570  addlocprlemgt  7594  nqprloc  7605  prmuloclemcalc  7625  ltsopr  7656  ltexprlemopl  7661  ltexprlemopu  7663  ltexprlemru  7672  prplnqu  7680  recexprlemlol  7686  recexprlemupu  7688  recexprlemdisj  7690  recexprlemss1l  7695  recexprlemss1u  7696  cauappcvgprlemopl  7706  cauappcvgprlemlol  7707  cauappcvgprlemupu  7709  cauappcvgprlemladdfu  7714  caucvgprlemk  7725  caucvgprlemnkj  7726  caucvgprlemnbj  7727  caucvgprlemm  7728  caucvgprlemopl  7729  caucvgprlemlol  7730  caucvgprlemupu  7732  caucvgprlemloc  7735  caucvgprlemladdfu  7737  caucvgprprlemk  7743  caucvgprprlemloccalc  7744  caucvgprprlemnkltj  7749  caucvgprprlemnkeqj  7750  caucvgprprlemnjltk  7751  caucvgprprlemnbj  7753  caucvgprprlemml  7754  caucvgprprlemopl  7757  caucvgprprlemlol  7758  caucvgprprlemupu  7760  lttrsr  7822  addgt0sr  7835  archsr  7842  caucvgsrlemcl  7849  caucvgsrlemfv  7851  suplocsrlemb  7866  suplocsrlempr  7867  suplocsrlem  7868  axpre-lttrn  7944
  Copyright terms: Public domain W3C validator