| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > son2lpi | GIF version | ||
| Description: A strict order relation has no 2-cycle loops. (Contributed by NM, 10-Feb-1996.) (Revised by Mario Carneiro, 10-May-2013.) |
| Ref | Expression |
|---|---|
| soi.1 | ⊢ 𝑅 Or 𝑆 |
| soi.2 | ⊢ 𝑅 ⊆ (𝑆 × 𝑆) |
| Ref | Expression |
|---|---|
| son2lpi | ⊢ ¬ (𝐴𝑅𝐵 ∧ 𝐵𝑅𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | soi.1 | . . 3 ⊢ 𝑅 Or 𝑆 | |
| 2 | soi.2 | . . 3 ⊢ 𝑅 ⊆ (𝑆 × 𝑆) | |
| 3 | 1, 2 | soirri 5123 | . 2 ⊢ ¬ 𝐴𝑅𝐴 |
| 4 | 1, 2 | sotri 5124 | . 2 ⊢ ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐴) → 𝐴𝑅𝐴) |
| 5 | 3, 4 | mto 666 | 1 ⊢ ¬ (𝐴𝑅𝐵 ∧ 𝐵𝑅𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∧ wa 104 ⊆ wss 3197 class class class wbr 4083 Or wor 4386 × cxp 4717 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 df-opab 4146 df-po 4387 df-iso 4388 df-xp 4725 |
| This theorem is referenced by: nqprdisj 7739 ltexprlemdisj 7801 recexprlemdisj 7825 caucvgprlemnkj 7861 caucvgprprlemnkltj 7884 caucvgprprlemnkeqj 7885 caucvgprprlemnjltk 7886 |
| Copyright terms: Public domain | W3C validator |