ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  son2lpi GIF version

Theorem son2lpi 5101
Description: A strict order relation has no 2-cycle loops. (Contributed by NM, 10-Feb-1996.) (Revised by Mario Carneiro, 10-May-2013.)
Hypotheses
Ref Expression
soi.1 𝑅 Or 𝑆
soi.2 𝑅 ⊆ (𝑆 × 𝑆)
Assertion
Ref Expression
son2lpi ¬ (𝐴𝑅𝐵𝐵𝑅𝐴)

Proof of Theorem son2lpi
StepHypRef Expression
1 soi.1 . . 3 𝑅 Or 𝑆
2 soi.2 . . 3 𝑅 ⊆ (𝑆 × 𝑆)
31, 2soirri 5099 . 2 ¬ 𝐴𝑅𝐴
41, 2sotri 5100 . 2 ((𝐴𝑅𝐵𝐵𝑅𝐴) → 𝐴𝑅𝐴)
53, 4mto 666 1 ¬ (𝐴𝑅𝐵𝐵𝑅𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104  wss 3177   class class class wbr 4062   Or wor 4363   × cxp 4694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-v 2781  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-br 4063  df-opab 4125  df-po 4364  df-iso 4365  df-xp 4702
This theorem is referenced by:  nqprdisj  7699  ltexprlemdisj  7761  recexprlemdisj  7785  caucvgprlemnkj  7821  caucvgprprlemnkltj  7844  caucvgprprlemnkeqj  7845  caucvgprprlemnjltk  7846
  Copyright terms: Public domain W3C validator