| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > son2lpi | GIF version | ||
| Description: A strict order relation has no 2-cycle loops. (Contributed by NM, 10-Feb-1996.) (Revised by Mario Carneiro, 10-May-2013.) |
| Ref | Expression |
|---|---|
| soi.1 | ⊢ 𝑅 Or 𝑆 |
| soi.2 | ⊢ 𝑅 ⊆ (𝑆 × 𝑆) |
| Ref | Expression |
|---|---|
| son2lpi | ⊢ ¬ (𝐴𝑅𝐵 ∧ 𝐵𝑅𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | soi.1 | . . 3 ⊢ 𝑅 Or 𝑆 | |
| 2 | soi.2 | . . 3 ⊢ 𝑅 ⊆ (𝑆 × 𝑆) | |
| 3 | 1, 2 | soirri 5064 | . 2 ⊢ ¬ 𝐴𝑅𝐴 |
| 4 | 1, 2 | sotri 5065 | . 2 ⊢ ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐴) → 𝐴𝑅𝐴) |
| 5 | 3, 4 | mto 663 | 1 ⊢ ¬ (𝐴𝑅𝐵 ∧ 𝐵𝑅𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∧ wa 104 ⊆ wss 3157 class class class wbr 4033 Or wor 4330 × cxp 4661 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-po 4331 df-iso 4332 df-xp 4669 |
| This theorem is referenced by: nqprdisj 7611 ltexprlemdisj 7673 recexprlemdisj 7697 caucvgprlemnkj 7733 caucvgprprlemnkltj 7756 caucvgprprlemnkeqj 7757 caucvgprprlemnjltk 7758 |
| Copyright terms: Public domain | W3C validator |