ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  son2lpi GIF version

Theorem son2lpi 4815
Description: A strict order relation has no 2-cycle loops. (Contributed by NM, 10-Feb-1996.) (Revised by Mario Carneiro, 10-May-2013.)
Hypotheses
Ref Expression
soi.1 𝑅 Or 𝑆
soi.2 𝑅 ⊆ (𝑆 × 𝑆)
Assertion
Ref Expression
son2lpi ¬ (𝐴𝑅𝐵𝐵𝑅𝐴)

Proof of Theorem son2lpi
StepHypRef Expression
1 soi.1 . . 3 𝑅 Or 𝑆
2 soi.2 . . 3 𝑅 ⊆ (𝑆 × 𝑆)
31, 2soirri 4813 . 2 ¬ 𝐴𝑅𝐴
41, 2sotri 4814 . 2 ((𝐴𝑅𝐵𝐵𝑅𝐴) → 𝐴𝑅𝐴)
53, 4mto 623 1 ¬ (𝐴𝑅𝐵𝐵𝑅𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 102  wss 2997   class class class wbr 3837   Or wor 4113   × cxp 4426
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-v 2621  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-br 3838  df-opab 3892  df-po 4114  df-iso 4115  df-xp 4434
This theorem is referenced by:  nqprdisj  7082  ltexprlemdisj  7144  recexprlemdisj  7168  caucvgprlemnkj  7204  caucvgprprlemnkltj  7227  caucvgprprlemnkeqj  7228  caucvgprprlemnjltk  7229
  Copyright terms: Public domain W3C validator