ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlemnkltj Unicode version

Theorem caucvgprprlemnkltj 7638
Description: Lemma for caucvgprpr 7661. Part of disjointness. (Contributed by Jim Kingdon, 12-Feb-2021.)
Hypotheses
Ref Expression
caucvgprpr.f  |-  ( ph  ->  F : N. --> P. )
caucvgprpr.cau  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <P  ( ( F `
 k )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  /\  ( F `  k
)  <P  ( ( F `
 n )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )
) ) )
caucvgprprlemnkj.k  |-  ( ph  ->  K  e.  N. )
caucvgprprlemnkj.j  |-  ( ph  ->  J  e.  N. )
caucvgprprlemnkj.s  |-  ( ph  ->  S  e.  Q. )
Assertion
Ref Expression
caucvgprprlemnkltj  |-  ( (
ph  /\  K  <N  J )  ->  -.  ( <. { p  |  p 
<Q  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  K )  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  S } ,  {
q  |  S  <Q  q } >. ) )
Distinct variable groups:    k, F, n    J, p, q    K, p, q    K, l, p    u, K, q    S, p, q   
k, l, n    u, k, n
Allowed substitution hints:    ph( u, k, n, q, p, l)    S( u, k, n, l)    F( u, q, p, l)    J( u, k, n, l)    K( k, n)

Proof of Theorem caucvgprprlemnkltj
Dummy variables  f  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltsopr 7545 . . . 4  |-  <P  Or  P.
2 ltrelpr 7454 . . . 4  |-  <P  C_  ( P.  X.  P. )
31, 2son2lpi 5005 . . 3  |-  -.  ( <. { p  |  p 
<Q  S } ,  {
q  |  S  <Q  q } >.  <P  ( F `
 J )  /\  ( F `  J ) 
<P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >. )
4 simprl 526 . . . . . . 7  |-  ( ( ( ph  /\  K  <N  J )  /\  (
( <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  +P.  <. { p  |  p  <Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( F `  K
)  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >. )
)  ->  ( <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. K ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( F `  K
) )
5 caucvgprpr.f . . . . . . . . . 10  |-  ( ph  ->  F : N. --> P. )
6 caucvgprpr.cau . . . . . . . . . 10  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <P  ( ( F `
 k )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  /\  ( F `  k
)  <P  ( ( F `
 n )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )
) ) )
75, 6caucvgprprlemval 7637 . . . . . . . . 9  |-  ( (
ph  /\  K  <N  J )  ->  ( ( F `  K )  <P  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q 
q } >. )  /\  ( F `  J
)  <P  ( ( F `
 K )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q  q } >. ) ) )
87simpld 111 . . . . . . . 8  |-  ( (
ph  /\  K  <N  J )  ->  ( F `  K )  <P  (
( F `  J
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. K ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q 
q } >. )
)
98adantr 274 . . . . . . 7  |-  ( ( ( ph  /\  K  <N  J )  /\  (
( <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  +P.  <. { p  |  p  <Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( F `  K
)  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >. )
)  ->  ( F `  K )  <P  (
( F `  J
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. K ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q 
q } >. )
)
101, 2sotri 5004 . . . . . . 7  |-  ( ( ( <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  +P.  <. { p  |  p  <Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( F `  K
)  /\  ( F `  K )  <P  (
( F `  J
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. K ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q 
q } >. )
)  ->  ( <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. K ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q 
q } >. )
)
114, 9, 10syl2anc 409 . . . . . 6  |-  ( ( ( ph  /\  K  <N  J )  /\  (
( <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  +P.  <. { p  |  p  <Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( F `  K
)  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >. )
)  ->  ( <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. K ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q 
q } >. )
)
12 ltaprg 7568 . . . . . . . 8  |-  ( ( f  e.  P.  /\  g  e.  P.  /\  h  e.  P. )  ->  (
f  <P  g  <->  ( h  +P.  f )  <P  (
h  +P.  g )
) )
1312adantl 275 . . . . . . 7  |-  ( ( ( ( ph  /\  K  <N  J )  /\  ( ( <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  +P.  <. { p  |  p  <Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( F `  K
)  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >. )
)  /\  ( f  e.  P.  /\  g  e. 
P.  /\  h  e.  P. ) )  ->  (
f  <P  g  <->  ( h  +P.  f )  <P  (
h  +P.  g )
) )
14 caucvgprprlemnkj.s . . . . . . . . 9  |-  ( ph  ->  S  e.  Q. )
1514ad2antrr 485 . . . . . . . 8  |-  ( ( ( ph  /\  K  <N  J )  /\  (
( <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  +P.  <. { p  |  p  <Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( F `  K
)  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >. )
)  ->  S  e.  Q. )
16 nqprlu 7496 . . . . . . . 8  |-  ( S  e.  Q.  ->  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  e.  P. )
1715, 16syl 14 . . . . . . 7  |-  ( ( ( ph  /\  K  <N  J )  /\  (
( <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  +P.  <. { p  |  p  <Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( F `  K
)  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >. )
)  ->  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  e.  P. )
18 caucvgprprlemnkj.j . . . . . . . . 9  |-  ( ph  ->  J  e.  N. )
195, 18ffvelrnd 5629 . . . . . . . 8  |-  ( ph  ->  ( F `  J
)  e.  P. )
2019ad2antrr 485 . . . . . . 7  |-  ( ( ( ph  /\  K  <N  J )  /\  (
( <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  +P.  <. { p  |  p  <Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( F `  K
)  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >. )
)  ->  ( F `  J )  e.  P. )
21 caucvgprprlemnkj.k . . . . . . . . 9  |-  ( ph  ->  K  e.  N. )
22 recnnpr 7497 . . . . . . . . 9  |-  ( K  e.  N.  ->  <. { p  |  p  <Q  ( *Q
`  [ <. K ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q 
q } >.  e.  P. )
2321, 22syl 14 . . . . . . . 8  |-  ( ph  -> 
<. { p  |  p 
<Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q  q } >.  e. 
P. )
2423ad2antrr 485 . . . . . . 7  |-  ( ( ( ph  /\  K  <N  J )  /\  (
( <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  +P.  <. { p  |  p  <Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( F `  K
)  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >. )
)  ->  <. { p  |  p  <Q  ( *Q
`  [ <. K ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q 
q } >.  e.  P. )
25 addcomprg 7527 . . . . . . . 8  |-  ( ( f  e.  P.  /\  g  e.  P. )  ->  ( f  +P.  g
)  =  ( g  +P.  f ) )
2625adantl 275 . . . . . . 7  |-  ( ( ( ( ph  /\  K  <N  J )  /\  ( ( <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  +P.  <. { p  |  p  <Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( F `  K
)  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >. )
)  /\  ( f  e.  P.  /\  g  e. 
P. ) )  -> 
( f  +P.  g
)  =  ( g  +P.  f ) )
2713, 17, 20, 24, 26caovord2d 6019 . . . . . 6  |-  ( ( ( ph  /\  K  <N  J )  /\  (
( <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  +P.  <. { p  |  p  <Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( F `  K
)  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >. )
)  ->  ( <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  <P  ( F `  J )  <->  ( <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. K ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q 
q } >. )
) )
2811, 27mpbird 166 . . . . 5  |-  ( ( ( ph  /\  K  <N  J )  /\  (
( <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  +P.  <. { p  |  p  <Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( F `  K
)  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >. )
)  ->  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  <P  ( F `  J )
)
29 recnnpr 7497 . . . . . . . . 9  |-  ( J  e.  N.  ->  <. { p  |  p  <Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >.  e.  P. )
3018, 29syl 14 . . . . . . . 8  |-  ( ph  -> 
<. { p  |  p 
<Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >.  e. 
P. )
3130ad2antrr 485 . . . . . . 7  |-  ( ( ( ph  /\  K  <N  J )  /\  (
( <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  +P.  <. { p  |  p  <Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( F `  K
)  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >. )
)  ->  <. { p  |  p  <Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >.  e.  P. )
32 ltaddpr 7546 . . . . . . 7  |-  ( ( ( F `  J
)  e.  P.  /\  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >.  e. 
P. )  ->  ( F `  J )  <P  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )
)
3320, 31, 32syl2anc 409 . . . . . 6  |-  ( ( ( ph  /\  K  <N  J )  /\  (
( <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  +P.  <. { p  |  p  <Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( F `  K
)  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >. )
)  ->  ( F `  J )  <P  (
( F `  J
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )
)
34 simprr 527 . . . . . 6  |-  ( ( ( ph  /\  K  <N  J )  /\  (
( <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  +P.  <. { p  |  p  <Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( F `  K
)  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >. )
)  ->  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >. )
351, 2sotri 5004 . . . . . 6  |-  ( ( ( F `  J
)  <P  ( ( F `
 J )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  /\  ( ( F `
 J )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >. )  ->  ( F `  J
)  <P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >. )
3633, 34, 35syl2anc 409 . . . . 5  |-  ( ( ( ph  /\  K  <N  J )  /\  (
( <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  +P.  <. { p  |  p  <Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( F `  K
)  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >. )
)  ->  ( F `  J )  <P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >. )
3728, 36jca 304 . . . 4  |-  ( ( ( ph  /\  K  <N  J )  /\  (
( <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  +P.  <. { p  |  p  <Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( F `  K
)  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >. )
)  ->  ( <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  <P  ( F `  J )  /\  ( F `  J )  <P 
<. { p  |  p 
<Q  S } ,  {
q  |  S  <Q  q } >. ) )
3837ex 114 . . 3  |-  ( (
ph  /\  K  <N  J )  ->  ( (
( <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  +P.  <. { p  |  p  <Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( F `  K
)  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >. )  ->  ( <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  <P  ( F `  J )  /\  ( F `  J
)  <P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >. )
) )
393, 38mtoi 659 . 2  |-  ( (
ph  /\  K  <N  J )  ->  -.  (
( <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  +P.  <. { p  |  p  <Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( F `  K
)  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >. )
)
4014adantr 274 . . . . 5  |-  ( (
ph  /\  K  <N  J )  ->  S  e.  Q. )
41 nnnq 7371 . . . . . . 7  |-  ( K  e.  N.  ->  [ <. K ,  1o >. ]  ~Q  e.  Q. )
42 recclnq 7341 . . . . . . 7  |-  ( [
<. K ,  1o >. ]  ~Q  e.  Q.  ->  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  e.  Q. )
4321, 41, 423syl 17 . . . . . 6  |-  ( ph  ->  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  e.  Q. )
4443adantr 274 . . . . 5  |-  ( (
ph  /\  K  <N  J )  ->  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  e. 
Q. )
45 addnqpr 7510 . . . . 5  |-  ( ( S  e.  Q.  /\  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  e.  Q. )  -> 
<. { p  |  p 
<Q  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  =  (
<. { p  |  p 
<Q  S } ,  {
q  |  S  <Q  q } >.  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. K ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q 
q } >. )
)
4640, 44, 45syl2anc 409 . . . 4  |-  ( (
ph  /\  K  <N  J )  ->  <. { p  |  p  <Q  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) )  <Q  q } >.  =  ( <. { p  |  p  <Q  S } ,  {
q  |  S  <Q  q } >.  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. K ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q 
q } >. )
)
4746breq1d 3997 . . 3  |-  ( (
ph  /\  K  <N  J )  ->  ( <. { p  |  p  <Q  ( S  +Q  ( *Q
`  [ <. K ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  K )  <->  (
<. { p  |  p 
<Q  S } ,  {
q  |  S  <Q  q } >.  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. K ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( F `  K
) ) )
4847anbi1d 462 . 2  |-  ( (
ph  /\  K  <N  J )  ->  ( ( <. { p  |  p 
<Q  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  K )  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  S } ,  {
q  |  S  <Q  q } >. )  <->  ( ( <. { p  |  p 
<Q  S } ,  {
q  |  S  <Q  q } >.  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. K ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( F `  K
)  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >. )
) )
4939, 48mtbird 668 1  |-  ( (
ph  /\  K  <N  J )  ->  -.  ( <. { p  |  p 
<Q  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  K )  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  S } ,  {
q  |  S  <Q  q } >. ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 973    = wceq 1348    e. wcel 2141   {cab 2156   A.wral 2448   <.cop 3584   class class class wbr 3987   -->wf 5192   ` cfv 5196  (class class class)co 5850   1oc1o 6385   [cec 6507   N.cnpi 7221    <N clti 7224    ~Q ceq 7228   Q.cnq 7229    +Q cplq 7231   *Qcrq 7233    <Q cltq 7234   P.cnp 7240    +P. cpp 7242    <P cltp 7244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-eprel 4272  df-id 4276  df-po 4279  df-iso 4280  df-iord 4349  df-on 4351  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-ov 5853  df-oprab 5854  df-mpo 5855  df-1st 6116  df-2nd 6117  df-recs 6281  df-irdg 6346  df-1o 6392  df-2o 6393  df-oadd 6396  df-omul 6397  df-er 6509  df-ec 6511  df-qs 6515  df-ni 7253  df-pli 7254  df-mi 7255  df-lti 7256  df-plpq 7293  df-mpq 7294  df-enq 7296  df-nqqs 7297  df-plqqs 7298  df-mqqs 7299  df-1nqqs 7300  df-rq 7301  df-ltnqqs 7302  df-enq0 7373  df-nq0 7374  df-0nq0 7375  df-plq0 7376  df-mq0 7377  df-inp 7415  df-iplp 7417  df-iltp 7419
This theorem is referenced by:  caucvgprprlemnkj  7641
  Copyright terms: Public domain W3C validator