| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caucvgprprlemnkltj | Unicode version | ||
| Description: Lemma for caucvgprpr 7860. Part of disjointness. (Contributed by Jim Kingdon, 12-Feb-2021.) |
| Ref | Expression |
|---|---|
| caucvgprpr.f |
|
| caucvgprpr.cau |
|
| caucvgprprlemnkj.k |
|
| caucvgprprlemnkj.j |
|
| caucvgprprlemnkj.s |
|
| Ref | Expression |
|---|---|
| caucvgprprlemnkltj |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltsopr 7744 |
. . . 4
| |
| 2 | ltrelpr 7653 |
. . . 4
| |
| 3 | 1, 2 | son2lpi 5098 |
. . 3
|
| 4 | simprl 529 |
. . . . . . 7
| |
| 5 | caucvgprpr.f |
. . . . . . . . . 10
| |
| 6 | caucvgprpr.cau |
. . . . . . . . . 10
| |
| 7 | 5, 6 | caucvgprprlemval 7836 |
. . . . . . . . 9
|
| 8 | 7 | simpld 112 |
. . . . . . . 8
|
| 9 | 8 | adantr 276 |
. . . . . . 7
|
| 10 | 1, 2 | sotri 5097 |
. . . . . . 7
|
| 11 | 4, 9, 10 | syl2anc 411 |
. . . . . 6
|
| 12 | ltaprg 7767 |
. . . . . . . 8
| |
| 13 | 12 | adantl 277 |
. . . . . . 7
|
| 14 | caucvgprprlemnkj.s |
. . . . . . . . 9
| |
| 15 | 14 | ad2antrr 488 |
. . . . . . . 8
|
| 16 | nqprlu 7695 |
. . . . . . . 8
| |
| 17 | 15, 16 | syl 14 |
. . . . . . 7
|
| 18 | caucvgprprlemnkj.j |
. . . . . . . . 9
| |
| 19 | 5, 18 | ffvelcdmd 5739 |
. . . . . . . 8
|
| 20 | 19 | ad2antrr 488 |
. . . . . . 7
|
| 21 | caucvgprprlemnkj.k |
. . . . . . . . 9
| |
| 22 | recnnpr 7696 |
. . . . . . . . 9
| |
| 23 | 21, 22 | syl 14 |
. . . . . . . 8
|
| 24 | 23 | ad2antrr 488 |
. . . . . . 7
|
| 25 | addcomprg 7726 |
. . . . . . . 8
| |
| 26 | 25 | adantl 277 |
. . . . . . 7
|
| 27 | 13, 17, 20, 24, 26 | caovord2d 6139 |
. . . . . 6
|
| 28 | 11, 27 | mpbird 167 |
. . . . 5
|
| 29 | recnnpr 7696 |
. . . . . . . . 9
| |
| 30 | 18, 29 | syl 14 |
. . . . . . . 8
|
| 31 | 30 | ad2antrr 488 |
. . . . . . 7
|
| 32 | ltaddpr 7745 |
. . . . . . 7
| |
| 33 | 20, 31, 32 | syl2anc 411 |
. . . . . 6
|
| 34 | simprr 531 |
. . . . . 6
| |
| 35 | 1, 2 | sotri 5097 |
. . . . . 6
|
| 36 | 33, 34, 35 | syl2anc 411 |
. . . . 5
|
| 37 | 28, 36 | jca 306 |
. . . 4
|
| 38 | 37 | ex 115 |
. . 3
|
| 39 | 3, 38 | mtoi 666 |
. 2
|
| 40 | 14 | adantr 276 |
. . . . 5
|
| 41 | nnnq 7570 |
. . . . . . 7
| |
| 42 | recclnq 7540 |
. . . . . . 7
| |
| 43 | 21, 41, 42 | 3syl 17 |
. . . . . 6
|
| 44 | 43 | adantr 276 |
. . . . 5
|
| 45 | addnqpr 7709 |
. . . . 5
| |
| 46 | 40, 44, 45 | syl2anc 411 |
. . . 4
|
| 47 | 46 | breq1d 4069 |
. . 3
|
| 48 | 47 | anbi1d 465 |
. 2
|
| 49 | 39, 48 | mtbird 675 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-eprel 4354 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-irdg 6479 df-1o 6525 df-2o 6526 df-oadd 6529 df-omul 6530 df-er 6643 df-ec 6645 df-qs 6649 df-ni 7452 df-pli 7453 df-mi 7454 df-lti 7455 df-plpq 7492 df-mpq 7493 df-enq 7495 df-nqqs 7496 df-plqqs 7497 df-mqqs 7498 df-1nqqs 7499 df-rq 7500 df-ltnqqs 7501 df-enq0 7572 df-nq0 7573 df-0nq0 7574 df-plq0 7575 df-mq0 7576 df-inp 7614 df-iplp 7616 df-iltp 7618 |
| This theorem is referenced by: caucvgprprlemnkj 7840 |
| Copyright terms: Public domain | W3C validator |