ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlemnkltj Unicode version

Theorem caucvgprprlemnkltj 7521
Description: Lemma for caucvgprpr 7544. Part of disjointness. (Contributed by Jim Kingdon, 12-Feb-2021.)
Hypotheses
Ref Expression
caucvgprpr.f  |-  ( ph  ->  F : N. --> P. )
caucvgprpr.cau  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <P  ( ( F `
 k )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  /\  ( F `  k
)  <P  ( ( F `
 n )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )
) ) )
caucvgprprlemnkj.k  |-  ( ph  ->  K  e.  N. )
caucvgprprlemnkj.j  |-  ( ph  ->  J  e.  N. )
caucvgprprlemnkj.s  |-  ( ph  ->  S  e.  Q. )
Assertion
Ref Expression
caucvgprprlemnkltj  |-  ( (
ph  /\  K  <N  J )  ->  -.  ( <. { p  |  p 
<Q  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  K )  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  S } ,  {
q  |  S  <Q  q } >. ) )
Distinct variable groups:    k, F, n    J, p, q    K, p, q    K, l, p    u, K, q    S, p, q   
k, l, n    u, k, n
Allowed substitution hints:    ph( u, k, n, q, p, l)    S( u, k, n, l)    F( u, q, p, l)    J( u, k, n, l)    K( k, n)

Proof of Theorem caucvgprprlemnkltj
Dummy variables  f  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltsopr 7428 . . . 4  |-  <P  Or  P.
2 ltrelpr 7337 . . . 4  |-  <P  C_  ( P.  X.  P. )
31, 2son2lpi 4943 . . 3  |-  -.  ( <. { p  |  p 
<Q  S } ,  {
q  |  S  <Q  q } >.  <P  ( F `
 J )  /\  ( F `  J ) 
<P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >. )
4 simprl 521 . . . . . . 7  |-  ( ( ( ph  /\  K  <N  J )  /\  (
( <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  +P.  <. { p  |  p  <Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( F `  K
)  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >. )
)  ->  ( <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. K ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( F `  K
) )
5 caucvgprpr.f . . . . . . . . . 10  |-  ( ph  ->  F : N. --> P. )
6 caucvgprpr.cau . . . . . . . . . 10  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <P  ( ( F `
 k )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  /\  ( F `  k
)  <P  ( ( F `
 n )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )
) ) )
75, 6caucvgprprlemval 7520 . . . . . . . . 9  |-  ( (
ph  /\  K  <N  J )  ->  ( ( F `  K )  <P  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q 
q } >. )  /\  ( F `  J
)  <P  ( ( F `
 K )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q  q } >. ) ) )
87simpld 111 . . . . . . . 8  |-  ( (
ph  /\  K  <N  J )  ->  ( F `  K )  <P  (
( F `  J
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. K ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q 
q } >. )
)
98adantr 274 . . . . . . 7  |-  ( ( ( ph  /\  K  <N  J )  /\  (
( <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  +P.  <. { p  |  p  <Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( F `  K
)  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >. )
)  ->  ( F `  K )  <P  (
( F `  J
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. K ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q 
q } >. )
)
101, 2sotri 4942 . . . . . . 7  |-  ( ( ( <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  +P.  <. { p  |  p  <Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( F `  K
)  /\  ( F `  K )  <P  (
( F `  J
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. K ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q 
q } >. )
)  ->  ( <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. K ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q 
q } >. )
)
114, 9, 10syl2anc 409 . . . . . 6  |-  ( ( ( ph  /\  K  <N  J )  /\  (
( <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  +P.  <. { p  |  p  <Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( F `  K
)  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >. )
)  ->  ( <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. K ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q 
q } >. )
)
12 ltaprg 7451 . . . . . . . 8  |-  ( ( f  e.  P.  /\  g  e.  P.  /\  h  e.  P. )  ->  (
f  <P  g  <->  ( h  +P.  f )  <P  (
h  +P.  g )
) )
1312adantl 275 . . . . . . 7  |-  ( ( ( ( ph  /\  K  <N  J )  /\  ( ( <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  +P.  <. { p  |  p  <Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( F `  K
)  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >. )
)  /\  ( f  e.  P.  /\  g  e. 
P.  /\  h  e.  P. ) )  ->  (
f  <P  g  <->  ( h  +P.  f )  <P  (
h  +P.  g )
) )
14 caucvgprprlemnkj.s . . . . . . . . 9  |-  ( ph  ->  S  e.  Q. )
1514ad2antrr 480 . . . . . . . 8  |-  ( ( ( ph  /\  K  <N  J )  /\  (
( <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  +P.  <. { p  |  p  <Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( F `  K
)  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >. )
)  ->  S  e.  Q. )
16 nqprlu 7379 . . . . . . . 8  |-  ( S  e.  Q.  ->  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  e.  P. )
1715, 16syl 14 . . . . . . 7  |-  ( ( ( ph  /\  K  <N  J )  /\  (
( <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  +P.  <. { p  |  p  <Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( F `  K
)  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >. )
)  ->  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  e.  P. )
18 caucvgprprlemnkj.j . . . . . . . . 9  |-  ( ph  ->  J  e.  N. )
195, 18ffvelrnd 5564 . . . . . . . 8  |-  ( ph  ->  ( F `  J
)  e.  P. )
2019ad2antrr 480 . . . . . . 7  |-  ( ( ( ph  /\  K  <N  J )  /\  (
( <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  +P.  <. { p  |  p  <Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( F `  K
)  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >. )
)  ->  ( F `  J )  e.  P. )
21 caucvgprprlemnkj.k . . . . . . . . 9  |-  ( ph  ->  K  e.  N. )
22 recnnpr 7380 . . . . . . . . 9  |-  ( K  e.  N.  ->  <. { p  |  p  <Q  ( *Q
`  [ <. K ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q 
q } >.  e.  P. )
2321, 22syl 14 . . . . . . . 8  |-  ( ph  -> 
<. { p  |  p 
<Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q  q } >.  e. 
P. )
2423ad2antrr 480 . . . . . . 7  |-  ( ( ( ph  /\  K  <N  J )  /\  (
( <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  +P.  <. { p  |  p  <Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( F `  K
)  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >. )
)  ->  <. { p  |  p  <Q  ( *Q
`  [ <. K ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q 
q } >.  e.  P. )
25 addcomprg 7410 . . . . . . . 8  |-  ( ( f  e.  P.  /\  g  e.  P. )  ->  ( f  +P.  g
)  =  ( g  +P.  f ) )
2625adantl 275 . . . . . . 7  |-  ( ( ( ( ph  /\  K  <N  J )  /\  ( ( <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  +P.  <. { p  |  p  <Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( F `  K
)  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >. )
)  /\  ( f  e.  P.  /\  g  e. 
P. ) )  -> 
( f  +P.  g
)  =  ( g  +P.  f ) )
2713, 17, 20, 24, 26caovord2d 5948 . . . . . 6  |-  ( ( ( ph  /\  K  <N  J )  /\  (
( <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  +P.  <. { p  |  p  <Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( F `  K
)  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >. )
)  ->  ( <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  <P  ( F `  J )  <->  ( <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. K ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q 
q } >. )
) )
2811, 27mpbird 166 . . . . 5  |-  ( ( ( ph  /\  K  <N  J )  /\  (
( <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  +P.  <. { p  |  p  <Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( F `  K
)  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >. )
)  ->  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  <P  ( F `  J )
)
29 recnnpr 7380 . . . . . . . . 9  |-  ( J  e.  N.  ->  <. { p  |  p  <Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >.  e.  P. )
3018, 29syl 14 . . . . . . . 8  |-  ( ph  -> 
<. { p  |  p 
<Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >.  e. 
P. )
3130ad2antrr 480 . . . . . . 7  |-  ( ( ( ph  /\  K  <N  J )  /\  (
( <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  +P.  <. { p  |  p  <Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( F `  K
)  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >. )
)  ->  <. { p  |  p  <Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >.  e.  P. )
32 ltaddpr 7429 . . . . . . 7  |-  ( ( ( F `  J
)  e.  P.  /\  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >.  e. 
P. )  ->  ( F `  J )  <P  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )
)
3320, 31, 32syl2anc 409 . . . . . 6  |-  ( ( ( ph  /\  K  <N  J )  /\  (
( <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  +P.  <. { p  |  p  <Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( F `  K
)  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >. )
)  ->  ( F `  J )  <P  (
( F `  J
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )
)
34 simprr 522 . . . . . 6  |-  ( ( ( ph  /\  K  <N  J )  /\  (
( <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  +P.  <. { p  |  p  <Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( F `  K
)  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >. )
)  ->  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >. )
351, 2sotri 4942 . . . . . 6  |-  ( ( ( F `  J
)  <P  ( ( F `
 J )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  /\  ( ( F `
 J )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >. )  ->  ( F `  J
)  <P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >. )
3633, 34, 35syl2anc 409 . . . . 5  |-  ( ( ( ph  /\  K  <N  J )  /\  (
( <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  +P.  <. { p  |  p  <Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( F `  K
)  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >. )
)  ->  ( F `  J )  <P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >. )
3728, 36jca 304 . . . 4  |-  ( ( ( ph  /\  K  <N  J )  /\  (
( <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  +P.  <. { p  |  p  <Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( F `  K
)  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >. )
)  ->  ( <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  <P  ( F `  J )  /\  ( F `  J )  <P 
<. { p  |  p 
<Q  S } ,  {
q  |  S  <Q  q } >. ) )
3837ex 114 . . 3  |-  ( (
ph  /\  K  <N  J )  ->  ( (
( <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  +P.  <. { p  |  p  <Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( F `  K
)  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >. )  ->  ( <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  <P  ( F `  J )  /\  ( F `  J
)  <P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >. )
) )
393, 38mtoi 654 . 2  |-  ( (
ph  /\  K  <N  J )  ->  -.  (
( <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  +P.  <. { p  |  p  <Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( F `  K
)  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >. )
)
4014adantr 274 . . . . 5  |-  ( (
ph  /\  K  <N  J )  ->  S  e.  Q. )
41 nnnq 7254 . . . . . . 7  |-  ( K  e.  N.  ->  [ <. K ,  1o >. ]  ~Q  e.  Q. )
42 recclnq 7224 . . . . . . 7  |-  ( [
<. K ,  1o >. ]  ~Q  e.  Q.  ->  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  e.  Q. )
4321, 41, 423syl 17 . . . . . 6  |-  ( ph  ->  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  e.  Q. )
4443adantr 274 . . . . 5  |-  ( (
ph  /\  K  <N  J )  ->  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  e. 
Q. )
45 addnqpr 7393 . . . . 5  |-  ( ( S  e.  Q.  /\  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  e.  Q. )  -> 
<. { p  |  p 
<Q  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  =  (
<. { p  |  p 
<Q  S } ,  {
q  |  S  <Q  q } >.  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. K ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q 
q } >. )
)
4640, 44, 45syl2anc 409 . . . 4  |-  ( (
ph  /\  K  <N  J )  ->  <. { p  |  p  <Q  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) )  <Q  q } >.  =  ( <. { p  |  p  <Q  S } ,  {
q  |  S  <Q  q } >.  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. K ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q 
q } >. )
)
4746breq1d 3947 . . 3  |-  ( (
ph  /\  K  <N  J )  ->  ( <. { p  |  p  <Q  ( S  +Q  ( *Q
`  [ <. K ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  K )  <->  (
<. { p  |  p 
<Q  S } ,  {
q  |  S  <Q  q } >.  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. K ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( F `  K
) ) )
4847anbi1d 461 . 2  |-  ( (
ph  /\  K  <N  J )  ->  ( ( <. { p  |  p 
<Q  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  K )  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  S } ,  {
q  |  S  <Q  q } >. )  <->  ( ( <. { p  |  p 
<Q  S } ,  {
q  |  S  <Q  q } >.  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. K ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( F `  K
)  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >. )
) )
4939, 48mtbird 663 1  |-  ( (
ph  /\  K  <N  J )  ->  -.  ( <. { p  |  p 
<Q  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  K )  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  S } ,  {
q  |  S  <Q  q } >. ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 963    = wceq 1332    e. wcel 1481   {cab 2126   A.wral 2417   <.cop 3535   class class class wbr 3937   -->wf 5127   ` cfv 5131  (class class class)co 5782   1oc1o 6314   [cec 6435   N.cnpi 7104    <N clti 7107    ~Q ceq 7111   Q.cnq 7112    +Q cplq 7114   *Qcrq 7116    <Q cltq 7117   P.cnp 7123    +P. cpp 7125    <P cltp 7127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-eprel 4219  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-1o 6321  df-2o 6322  df-oadd 6325  df-omul 6326  df-er 6437  df-ec 6439  df-qs 6443  df-ni 7136  df-pli 7137  df-mi 7138  df-lti 7139  df-plpq 7176  df-mpq 7177  df-enq 7179  df-nqqs 7180  df-plqqs 7181  df-mqqs 7182  df-1nqqs 7183  df-rq 7184  df-ltnqqs 7185  df-enq0 7256  df-nq0 7257  df-0nq0 7258  df-plq0 7259  df-mq0 7260  df-inp 7298  df-iplp 7300  df-iltp 7302
This theorem is referenced by:  caucvgprprlemnkj  7524
  Copyright terms: Public domain W3C validator