ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmeq Unicode version

Theorem dmeq 4863
Description: Equality theorem for domain. (Contributed by NM, 11-Aug-1994.)
Assertion
Ref Expression
dmeq  |-  ( A  =  B  ->  dom  A  =  dom  B )

Proof of Theorem dmeq
StepHypRef Expression
1 dmss 4862 . . 3  |-  ( A 
C_  B  ->  dom  A 
C_  dom  B )
2 dmss 4862 . . 3  |-  ( B 
C_  A  ->  dom  B 
C_  dom  A )
31, 2anim12i 338 . 2  |-  ( ( A  C_  B  /\  B  C_  A )  -> 
( dom  A  C_  dom  B  /\  dom  B  C_  dom  A ) )
4 eqss 3195 . 2  |-  ( A  =  B  <->  ( A  C_  B  /\  B  C_  A ) )
5 eqss 3195 . 2  |-  ( dom 
A  =  dom  B  <->  ( dom  A  C_  dom  B  /\  dom  B  C_  dom  A ) )
63, 4, 53imtr4i 201 1  |-  ( A  =  B  ->  dom  A  =  dom  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    C_ wss 3154   dom cdm 4660
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-sn 3625  df-pr 3626  df-op 3628  df-br 4031  df-dm 4670
This theorem is referenced by:  dmeqi  4864  dmeqd  4865  xpid11  4886  sqxpeq0  5090  fneq1  5343  eqfnfv2  5657  offval  6140  ofrfval  6141  offval3  6188  smoeq  6345  tfrlemi14d  6388  tfr1onlemres  6404  tfrcllemres  6417  rdgivallem  6436  rdgon  6441  rdg0  6442  frec0g  6452  freccllem  6457  frecfcllem  6459  frecsuclem  6461  frecsuc  6462  ereq1  6596  fundmeng  6863  acfun  7269  ccfunen  7326  ennnfonelemj0  12561  ennnfonelemg  12563  ennnfonelemp1  12566  ennnfonelemom  12568  ennnfonelemnn0  12582  ptex  12878  prdsex  12883  blfvalps  14564  reldvg  14858
  Copyright terms: Public domain W3C validator