ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmeq Unicode version

Theorem dmeq 4878
Description: Equality theorem for domain. (Contributed by NM, 11-Aug-1994.)
Assertion
Ref Expression
dmeq  |-  ( A  =  B  ->  dom  A  =  dom  B )

Proof of Theorem dmeq
StepHypRef Expression
1 dmss 4877 . . 3  |-  ( A 
C_  B  ->  dom  A 
C_  dom  B )
2 dmss 4877 . . 3  |-  ( B 
C_  A  ->  dom  B 
C_  dom  A )
31, 2anim12i 338 . 2  |-  ( ( A  C_  B  /\  B  C_  A )  -> 
( dom  A  C_  dom  B  /\  dom  B  C_  dom  A ) )
4 eqss 3208 . 2  |-  ( A  =  B  <->  ( A  C_  B  /\  B  C_  A ) )
5 eqss 3208 . 2  |-  ( dom 
A  =  dom  B  <->  ( dom  A  C_  dom  B  /\  dom  B  C_  dom  A ) )
63, 4, 53imtr4i 201 1  |-  ( A  =  B  ->  dom  A  =  dom  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    C_ wss 3166   dom cdm 4675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045  df-dm 4685
This theorem is referenced by:  dmeqi  4879  dmeqd  4880  xpid11  4901  sqxpeq0  5106  fneq1  5362  eqfnfv2  5678  funopdmsn  5764  offval  6166  ofrfval  6167  offval3  6219  smoeq  6376  tfrlemi14d  6419  tfr1onlemres  6435  tfrcllemres  6448  rdgivallem  6467  rdgon  6472  rdg0  6473  frec0g  6483  freccllem  6488  frecfcllem  6490  frecsuclem  6492  frecsuc  6493  ereq1  6627  fundmeng  6899  acfun  7319  ccfunen  7376  fundm2domnop0  10990  ennnfonelemj0  12772  ennnfonelemg  12774  ennnfonelemp1  12777  ennnfonelemom  12779  ennnfonelemnn0  12793  ptex  13096  prdsex  13101  blfvalps  14857  reldvg  15151
  Copyright terms: Public domain W3C validator