ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmeq Unicode version

Theorem dmeq 4923
Description: Equality theorem for domain. (Contributed by NM, 11-Aug-1994.)
Assertion
Ref Expression
dmeq  |-  ( A  =  B  ->  dom  A  =  dom  B )

Proof of Theorem dmeq
StepHypRef Expression
1 dmss 4922 . . 3  |-  ( A 
C_  B  ->  dom  A 
C_  dom  B )
2 dmss 4922 . . 3  |-  ( B 
C_  A  ->  dom  B 
C_  dom  A )
31, 2anim12i 338 . 2  |-  ( ( A  C_  B  /\  B  C_  A )  -> 
( dom  A  C_  dom  B  /\  dom  B  C_  dom  A ) )
4 eqss 3239 . 2  |-  ( A  =  B  <->  ( A  C_  B  /\  B  C_  A ) )
5 eqss 3239 . 2  |-  ( dom 
A  =  dom  B  <->  ( dom  A  C_  dom  B  /\  dom  B  C_  dom  A ) )
63, 4, 53imtr4i 201 1  |-  ( A  =  B  ->  dom  A  =  dom  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    C_ wss 3197   dom cdm 4719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-dm 4729
This theorem is referenced by:  dmeqi  4924  dmeqd  4925  xpid11  4947  sqxpeq0  5152  fneq1  5409  eqfnfv2  5733  funopdmsn  5819  offval  6226  ofrfval  6227  offval3  6279  smoeq  6436  tfrlemi14d  6479  tfr1onlemres  6495  tfrcllemres  6508  rdgivallem  6527  rdgon  6532  rdg0  6533  frec0g  6543  freccllem  6548  frecfcllem  6550  frecsuclem  6552  frecsuc  6553  ereq1  6687  fundmeng  6960  acfun  7389  ccfunen  7450  fundm2domnop0  11067  ennnfonelemj0  12972  ennnfonelemg  12974  ennnfonelemp1  12977  ennnfonelemom  12979  ennnfonelemnn0  12993  ptex  13297  prdsex  13302  blfvalps  15059  reldvg  15353  uhgr0e  15882  incistruhgr  15890  ausgrusgrien  15969
  Copyright terms: Public domain W3C validator