ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmeq Unicode version

Theorem dmeq 4862
Description: Equality theorem for domain. (Contributed by NM, 11-Aug-1994.)
Assertion
Ref Expression
dmeq  |-  ( A  =  B  ->  dom  A  =  dom  B )

Proof of Theorem dmeq
StepHypRef Expression
1 dmss 4861 . . 3  |-  ( A 
C_  B  ->  dom  A 
C_  dom  B )
2 dmss 4861 . . 3  |-  ( B 
C_  A  ->  dom  B 
C_  dom  A )
31, 2anim12i 338 . 2  |-  ( ( A  C_  B  /\  B  C_  A )  -> 
( dom  A  C_  dom  B  /\  dom  B  C_  dom  A ) )
4 eqss 3194 . 2  |-  ( A  =  B  <->  ( A  C_  B  /\  B  C_  A ) )
5 eqss 3194 . 2  |-  ( dom 
A  =  dom  B  <->  ( dom  A  C_  dom  B  /\  dom  B  C_  dom  A ) )
63, 4, 53imtr4i 201 1  |-  ( A  =  B  ->  dom  A  =  dom  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    C_ wss 3153   dom cdm 4659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-dm 4669
This theorem is referenced by:  dmeqi  4863  dmeqd  4864  xpid11  4885  sqxpeq0  5089  fneq1  5342  eqfnfv2  5656  offval  6138  ofrfval  6139  offval3  6186  smoeq  6343  tfrlemi14d  6386  tfr1onlemres  6402  tfrcllemres  6415  rdgivallem  6434  rdgon  6439  rdg0  6440  frec0g  6450  freccllem  6455  frecfcllem  6457  frecsuclem  6459  frecsuc  6460  ereq1  6594  fundmeng  6861  acfun  7267  ccfunen  7324  ennnfonelemj0  12558  ennnfonelemg  12560  ennnfonelemp1  12563  ennnfonelemom  12565  ennnfonelemnn0  12579  ptex  12875  prdsex  12880  blfvalps  14553  reldvg  14833
  Copyright terms: Public domain W3C validator