| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmeq | Unicode version | ||
| Description: Equality theorem for domain. (Contributed by NM, 11-Aug-1994.) |
| Ref | Expression |
|---|---|
| dmeq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmss 4877 |
. . 3
| |
| 2 | dmss 4877 |
. . 3
| |
| 3 | 1, 2 | anim12i 338 |
. 2
|
| 4 | eqss 3208 |
. 2
| |
| 5 | eqss 3208 |
. 2
| |
| 6 | 3, 4, 5 | 3imtr4i 201 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-sn 3639 df-pr 3640 df-op 3642 df-br 4045 df-dm 4685 |
| This theorem is referenced by: dmeqi 4879 dmeqd 4880 xpid11 4901 sqxpeq0 5106 fneq1 5362 eqfnfv2 5678 funopdmsn 5764 offval 6166 ofrfval 6167 offval3 6219 smoeq 6376 tfrlemi14d 6419 tfr1onlemres 6435 tfrcllemres 6448 rdgivallem 6467 rdgon 6472 rdg0 6473 frec0g 6483 freccllem 6488 frecfcllem 6490 frecsuclem 6492 frecsuc 6493 ereq1 6627 fundmeng 6899 acfun 7319 ccfunen 7376 fundm2domnop0 10990 ennnfonelemj0 12772 ennnfonelemg 12774 ennnfonelemp1 12777 ennnfonelemom 12779 ennnfonelemnn0 12793 ptex 13096 prdsex 13101 blfvalps 14857 reldvg 15151 |
| Copyright terms: Public domain | W3C validator |