| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmeq | Unicode version | ||
| Description: Equality theorem for domain. (Contributed by NM, 11-Aug-1994.) |
| Ref | Expression |
|---|---|
| dmeq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmss 4922 |
. . 3
| |
| 2 | dmss 4922 |
. . 3
| |
| 3 | 1, 2 | anim12i 338 |
. 2
|
| 4 | eqss 3239 |
. 2
| |
| 5 | eqss 3239 |
. 2
| |
| 6 | 3, 4, 5 | 3imtr4i 201 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 df-dm 4729 |
| This theorem is referenced by: dmeqi 4924 dmeqd 4925 xpid11 4947 sqxpeq0 5152 fneq1 5409 eqfnfv2 5733 funopdmsn 5819 offval 6226 ofrfval 6227 offval3 6279 smoeq 6436 tfrlemi14d 6479 tfr1onlemres 6495 tfrcllemres 6508 rdgivallem 6527 rdgon 6532 rdg0 6533 frec0g 6543 freccllem 6548 frecfcllem 6550 frecsuclem 6552 frecsuc 6553 ereq1 6687 fundmeng 6960 acfun 7389 ccfunen 7450 fundm2domnop0 11067 ennnfonelemj0 12972 ennnfonelemg 12974 ennnfonelemp1 12977 ennnfonelemom 12979 ennnfonelemnn0 12993 ptex 13297 prdsex 13302 blfvalps 15059 reldvg 15353 uhgr0e 15882 incistruhgr 15890 ausgrusgrien 15969 |
| Copyright terms: Public domain | W3C validator |