ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmeq Unicode version

Theorem dmeq 4897
Description: Equality theorem for domain. (Contributed by NM, 11-Aug-1994.)
Assertion
Ref Expression
dmeq  |-  ( A  =  B  ->  dom  A  =  dom  B )

Proof of Theorem dmeq
StepHypRef Expression
1 dmss 4896 . . 3  |-  ( A 
C_  B  ->  dom  A 
C_  dom  B )
2 dmss 4896 . . 3  |-  ( B 
C_  A  ->  dom  B 
C_  dom  A )
31, 2anim12i 338 . 2  |-  ( ( A  C_  B  /\  B  C_  A )  -> 
( dom  A  C_  dom  B  /\  dom  B  C_  dom  A ) )
4 eqss 3216 . 2  |-  ( A  =  B  <->  ( A  C_  B  /\  B  C_  A ) )
5 eqss 3216 . 2  |-  ( dom 
A  =  dom  B  <->  ( dom  A  C_  dom  B  /\  dom  B  C_  dom  A ) )
63, 4, 53imtr4i 201 1  |-  ( A  =  B  ->  dom  A  =  dom  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    C_ wss 3174   dom cdm 4693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-dm 4703
This theorem is referenced by:  dmeqi  4898  dmeqd  4899  xpid11  4920  sqxpeq0  5125  fneq1  5381  eqfnfv2  5701  funopdmsn  5787  offval  6189  ofrfval  6190  offval3  6242  smoeq  6399  tfrlemi14d  6442  tfr1onlemres  6458  tfrcllemres  6471  rdgivallem  6490  rdgon  6495  rdg0  6496  frec0g  6506  freccllem  6511  frecfcllem  6513  frecsuclem  6515  frecsuc  6516  ereq1  6650  fundmeng  6923  acfun  7350  ccfunen  7411  fundm2domnop0  11027  ennnfonelemj0  12887  ennnfonelemg  12889  ennnfonelemp1  12892  ennnfonelemom  12894  ennnfonelemnn0  12908  ptex  13211  prdsex  13216  blfvalps  14972  reldvg  15266  uhgr0e  15793  incistruhgr  15801
  Copyright terms: Public domain W3C validator