| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmeq | Unicode version | ||
| Description: Equality theorem for domain. (Contributed by NM, 11-Aug-1994.) |
| Ref | Expression |
|---|---|
| dmeq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmss 4878 |
. . 3
| |
| 2 | dmss 4878 |
. . 3
| |
| 3 | 1, 2 | anim12i 338 |
. 2
|
| 4 | eqss 3208 |
. 2
| |
| 5 | eqss 3208 |
. 2
| |
| 6 | 3, 4, 5 | 3imtr4i 201 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-sn 3639 df-pr 3640 df-op 3642 df-br 4046 df-dm 4686 |
| This theorem is referenced by: dmeqi 4880 dmeqd 4881 xpid11 4902 sqxpeq0 5107 fneq1 5363 eqfnfv2 5680 funopdmsn 5766 offval 6168 ofrfval 6169 offval3 6221 smoeq 6378 tfrlemi14d 6421 tfr1onlemres 6437 tfrcllemres 6450 rdgivallem 6469 rdgon 6474 rdg0 6475 frec0g 6485 freccllem 6490 frecfcllem 6492 frecsuclem 6494 frecsuc 6495 ereq1 6629 fundmeng 6901 acfun 7321 ccfunen 7378 fundm2domnop0 10992 ennnfonelemj0 12805 ennnfonelemg 12807 ennnfonelemp1 12810 ennnfonelemom 12812 ennnfonelemnn0 12826 ptex 13129 prdsex 13134 blfvalps 14890 reldvg 15184 |
| Copyright terms: Public domain | W3C validator |