ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmeq Unicode version

Theorem dmeq 4866
Description: Equality theorem for domain. (Contributed by NM, 11-Aug-1994.)
Assertion
Ref Expression
dmeq  |-  ( A  =  B  ->  dom  A  =  dom  B )

Proof of Theorem dmeq
StepHypRef Expression
1 dmss 4865 . . 3  |-  ( A 
C_  B  ->  dom  A 
C_  dom  B )
2 dmss 4865 . . 3  |-  ( B 
C_  A  ->  dom  B 
C_  dom  A )
31, 2anim12i 338 . 2  |-  ( ( A  C_  B  /\  B  C_  A )  -> 
( dom  A  C_  dom  B  /\  dom  B  C_  dom  A ) )
4 eqss 3198 . 2  |-  ( A  =  B  <->  ( A  C_  B  /\  B  C_  A ) )
5 eqss 3198 . 2  |-  ( dom 
A  =  dom  B  <->  ( dom  A  C_  dom  B  /\  dom  B  C_  dom  A ) )
63, 4, 53imtr4i 201 1  |-  ( A  =  B  ->  dom  A  =  dom  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    C_ wss 3157   dom cdm 4663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-dm 4673
This theorem is referenced by:  dmeqi  4867  dmeqd  4868  xpid11  4889  sqxpeq0  5093  fneq1  5346  eqfnfv2  5660  offval  6143  ofrfval  6144  offval3  6191  smoeq  6348  tfrlemi14d  6391  tfr1onlemres  6407  tfrcllemres  6420  rdgivallem  6439  rdgon  6444  rdg0  6445  frec0g  6455  freccllem  6460  frecfcllem  6462  frecsuclem  6464  frecsuc  6465  ereq1  6599  fundmeng  6866  acfun  7274  ccfunen  7331  ennnfonelemj0  12618  ennnfonelemg  12620  ennnfonelemp1  12623  ennnfonelemom  12625  ennnfonelemnn0  12639  ptex  12935  prdsex  12940  blfvalps  14621  reldvg  14915
  Copyright terms: Public domain W3C validator