Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dmeq | Unicode version |
Description: Equality theorem for domain. (Contributed by NM, 11-Aug-1994.) |
Ref | Expression |
---|---|
dmeq |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmss 4803 | . . 3 | |
2 | dmss 4803 | . . 3 | |
3 | 1, 2 | anim12i 336 | . 2 |
4 | eqss 3157 | . 2 | |
5 | eqss 3157 | . 2 | |
6 | 3, 4, 5 | 3imtr4i 200 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wss 3116 cdm 4604 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-dm 4614 |
This theorem is referenced by: dmeqi 4805 dmeqd 4806 xpid11 4827 sqxpeq0 5027 fneq1 5276 eqfnfv2 5584 offval 6057 ofrfval 6058 offval3 6102 smoeq 6258 tfrlemi14d 6301 tfr1onlemres 6317 tfrcllemres 6330 rdgivallem 6349 rdgon 6354 rdg0 6355 frec0g 6365 freccllem 6370 frecfcllem 6372 frecsuclem 6374 frecsuc 6375 ereq1 6508 fundmeng 6773 acfun 7163 ccfunen 7205 ennnfonelemj0 12334 ennnfonelemg 12336 ennnfonelemp1 12339 ennnfonelemom 12341 ennnfonelemnn0 12355 blfvalps 13025 reldvg 13288 |
Copyright terms: Public domain | W3C validator |