| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmeq | Unicode version | ||
| Description: Equality theorem for domain. (Contributed by NM, 11-Aug-1994.) |
| Ref | Expression |
|---|---|
| dmeq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmss 4896 |
. . 3
| |
| 2 | dmss 4896 |
. . 3
| |
| 3 | 1, 2 | anim12i 338 |
. 2
|
| 4 | eqss 3216 |
. 2
| |
| 5 | eqss 3216 |
. 2
| |
| 6 | 3, 4, 5 | 3imtr4i 201 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-sn 3649 df-pr 3650 df-op 3652 df-br 4060 df-dm 4703 |
| This theorem is referenced by: dmeqi 4898 dmeqd 4899 xpid11 4920 sqxpeq0 5125 fneq1 5381 eqfnfv2 5701 funopdmsn 5787 offval 6189 ofrfval 6190 offval3 6242 smoeq 6399 tfrlemi14d 6442 tfr1onlemres 6458 tfrcllemres 6471 rdgivallem 6490 rdgon 6495 rdg0 6496 frec0g 6506 freccllem 6511 frecfcllem 6513 frecsuclem 6515 frecsuc 6516 ereq1 6650 fundmeng 6923 acfun 7350 ccfunen 7411 fundm2domnop0 11027 ennnfonelemj0 12887 ennnfonelemg 12889 ennnfonelemp1 12892 ennnfonelemom 12894 ennnfonelemnn0 12908 ptex 13211 prdsex 13216 blfvalps 14972 reldvg 15266 uhgr0e 15793 incistruhgr 15801 |
| Copyright terms: Public domain | W3C validator |