ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmeq Unicode version

Theorem dmeq 4829
Description: Equality theorem for domain. (Contributed by NM, 11-Aug-1994.)
Assertion
Ref Expression
dmeq  |-  ( A  =  B  ->  dom  A  =  dom  B )

Proof of Theorem dmeq
StepHypRef Expression
1 dmss 4828 . . 3  |-  ( A 
C_  B  ->  dom  A 
C_  dom  B )
2 dmss 4828 . . 3  |-  ( B 
C_  A  ->  dom  B 
C_  dom  A )
31, 2anim12i 338 . 2  |-  ( ( A  C_  B  /\  B  C_  A )  -> 
( dom  A  C_  dom  B  /\  dom  B  C_  dom  A ) )
4 eqss 3172 . 2  |-  ( A  =  B  <->  ( A  C_  B  /\  B  C_  A ) )
5 eqss 3172 . 2  |-  ( dom 
A  =  dom  B  <->  ( dom  A  C_  dom  B  /\  dom  B  C_  dom  A ) )
63, 4, 53imtr4i 201 1  |-  ( A  =  B  ->  dom  A  =  dom  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    C_ wss 3131   dom cdm 4628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-dm 4638
This theorem is referenced by:  dmeqi  4830  dmeqd  4831  xpid11  4852  sqxpeq0  5054  fneq1  5306  eqfnfv2  5617  offval  6093  ofrfval  6094  offval3  6138  smoeq  6294  tfrlemi14d  6337  tfr1onlemres  6353  tfrcllemres  6366  rdgivallem  6385  rdgon  6390  rdg0  6391  frec0g  6401  freccllem  6406  frecfcllem  6408  frecsuclem  6410  frecsuc  6411  ereq1  6545  fundmeng  6810  acfun  7209  ccfunen  7266  ennnfonelemj0  12405  ennnfonelemg  12407  ennnfonelemp1  12410  ennnfonelemom  12412  ennnfonelemnn0  12426  ptex  12719  prdsex  12724  blfvalps  14046  reldvg  14309
  Copyright terms: Public domain W3C validator